Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 22, Issue 3 doi: 10.1016/j.eng.2022.07.013

From Computer-Aided Design (CAD) Toward Human-Aided Design (HAD): An Isogeometric Topology Optimization Approach

a National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
b State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received: 2022-03-16 Revised: 2022-05-25 Accepted: 2022-07-04 Available online: 2022-08-29

Next Previous

Abstract

In this paper, the novel design mode of human-aided design (HAD) is proposed to replace conventional computer-aided design (CAD). In HAD, computers can automatically complete the whole product design via a new isogeometric topology optimization (ITO), while humans just assist to slightly modify the design to meet requirements. An embedded domain ITO is presented to design complex models with irregular design domains, and editable geometric models of optimized results can be automatically generated based on layered ITO results. Three examples are tested to verify the proposed HAD mode, including a 3D cantilever beam with a regular design domain, an automotive part with an irregular design domain, and a Messerschmitt-Bölkow-Blohm (MBB) beam with a multiscale structure. The results demonstrate that the proposed HAD mode can automatically deliver high-quality optimized models; thus, it has great potential as a revolutionary technology to change the current design mode from CAD to HAD.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

References

[ 1 ] Ault HK. 3D geometric modeling for the 21st century. Eng Des Graph J 1999; 63(2):33–42. link1

[ 2 ] Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, et al. Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 2010;199(5–8):229–63. link1

[ 3 ] Deng YM, Lam YC, Tor SB, Britton GA. A CAD–CAE integrated injection molding design system. Eng Comput 2002;18(1):80–92. link1

[ 4 ] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 2005;194(39–41):4135–95. link1

[ 5 ] Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T. Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 2015;117:89–116. link1

[ 6 ] Wang Y, Wang Z, Xia Z, Poh LH. Structural design optimization using isogeometric analysis: a comprehensive review. Comput Model Eng Sci 2018;117(3):455–507. link1

[ 7 ] Gao J, Xiao M, Zhang Y, Gao L. A comprehensive review of isogeometric topology optimization: methods, applications and prospects. Chin J Mech Eng 2020;33:87. link1

[ 8 ] Lieu QX, Lee J, Lee D, Lee S, Kim D, Lee J. Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm. Thin-Walled Struct 2018;124:588–604. link1

[ 9 ] Bendsøe MP, Sigmund O. Topology optimization: theory, methods, and applications. Berlin: Springer; 2004. link1

[10] Le C, Norato J, Bruns T, Ha C, Tortorelli D. Stress-based topology optimization for continua. Struct Multidiscipl Optim 2010;41(4):605–20. link1

[11] Huang X, Xie YM. Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscipl Optim 2010;40 (1–6):409–16. link1

[12] Seo YD, Kim HJ, Youn SK. Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 2010;199(49–52):3270–96. link1

[13] Kumar AV, Parthasarathy A. Topology optimization using B-spline finite elements. Struct Multidiscipl Optim 2011;44(4):471–81. link1

[14] Hassani B, Khanzadi M, Tavakkoli SM. An isogeometrical approach to structural topology optimization by optimality criteria. Struct Multidiscipl Optim 2012;45(2):223–33. link1

[15] Qian X. Topology optimization in B-spline space. Comput Methods Appl Mech Eng 2013;265:15–35. link1

[16] Xie X, Wang S, Xu M, Jiang N, Wang Y. A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 2020;360:112696. link1

[17] Taheri AH, Suresh K. An isogeometric approach to topology optimization of multi-material and functionally graded structures. Int J Numer Methods Eng 2017;109(5):668–96. link1

[18] Gao J, Luo Z, Xiao M, Gao L, Li P. A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures. Appl Math Model 2020;81:818–43. link1

[19] Wang Y, Xu H, Pasini D. Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng 2017;316:568–85. link1

[20] Lieu QX, Lee J. A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 2017;323:272–302. link1

[21] Lieu QX, Lee J. Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 2017;112(13):2025–47. link1

[22] Shojaee S, Mohamadianb M, Valizadeh N. Composition of isogeometric analysis with level set method for structural topology optimization. Int J Optim Civ Eng 2012;2(1):47–70. link1

[23] Wang Y, Benson DJ. Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 2016;57(1):19–35. link1

[24] Wang Y, Benson DJ. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Front Mech Eng 2016;11(4):328–43. link1

[25] Ghasemi H, Park HS, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput Methods Appl Mech Eng 2017;313:239–58. link1

[26] Ghasemi H, Park HS, Rabczuk T. A multi-material level set-based topology optimization of flexoelectric composites. Comput Methods Appl Mech Eng 2018;332:47–62. link1

[27] Lee SW, Yoon M, Cho S. Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets. Comput Aided Des 2017;82:88–99. link1

[28] Sovacool BK, Furszyfer Del Rio DD. Smart home technologies in Europe: a critical review of concepts, benefits, risks and policies. Renew Sustain Energy Rev 2020;120:109663. link1

[29] Chen B, Wan J, Shu L, Li P, Mukherjee M, Yin B. Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access 2017;6:6505–19. link1

[30] Meiring GAM, Myburgh HC. A review of intelligent driving style analysis systems and related artificial intelligence algorithms. Sensors 2015;15(12): 30653–82. link1

[31] Rozvany GIN, Bendsøe MP, Kirsch U. Layout optimization of structures. Appl Mech Rev 1995;48(2):41–119. link1

[32] Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 1987;24(2):359–73. link1

[33] Kang Z, Wang Y. Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 2011;200(49– 52):3515–25. link1

[34] Wang Y, Kang Z, He Q. An adaptive refinement approach for topology optimization based on separated density field description. Comput Struct 2013;117:10–22. link1

[35] Wang Y, Gao L, Qu J, Xia Z, Deng X. Isogeometric analysis based on geometric reconstruction models. Front Mech Eng 2021;16(4):782–97. link1

[36] Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, et al. An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and Tspline CAD surfaces. Comput Methods Appl Mech Eng 2012;2012(249– 252):116–50. link1

[37] Guo Y, Heller J, Hughes TJR, Ruess M, Schillinger D. Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format. Comput Methods Appl Mech Eng 2018;336:39–79. link1

[38] Subedi SC, Verma CS, Suresh K. A review of methods for the geometric postprocessing of topology optimized models. J Comput Inf Sci Eng 2020;20(6): 060801. link1

[39] Costa G, Montemurro M, Pailhès J. NURBS hyper-surfaces for 3D topology optimization problems. Mech Adv Mater Struct 2021;28(7):665–84. link1

[40] Costa G, Montemurro M. Eigen-frequencies and harmonic responses in topology optimisation: a CAD-compatible algorithm. Eng Struct 2020;214:110602. link1

[41] Barnhill RE, Farin G, Jordan M, Piper BR. Surface/surface intersection. Comput Aided Geom Des 1987;4(1–2):3–16. link1

[42] Grandine TA, Klein IV FW. A new approach to the surface intersection problem. Comput Aided Geom Des 1997;14(2):111–34. link1

[43] Barnhill RE, Kersey SN. A marching method for parametric surface/surface intersection. Comput Aided Geom Des 1990;7(1–4):257–80. link1

[44] Woodward CD. Skinning techniques for interactive B-spline surface interpolation. Comput Aided Des 1988;20(8):441–51. link1

[45] Piegl L, Tiller W. Algorithm for approximate NURBS skinning. Comput Aided Des 1996;28(9):699–706. link1

[46] Lin CY, Liou CS, Lai JY. A surface-lofting approach for smooth-surface reconstruction from 3D measurement data. Comput Ind 1997;34(1):73–85. link1

[47] Hartmann E. Blending an implicit with a parametric surface. Comput Aided Geom Des 1995;12(8):825–35. link1

[48] Farouki RT. Trimmed-surface algorithms for the evaluation and interrogation of solid boundary representations. IBM J Res Develop 1987;31(3):314–34. link1

[49] Hennig P, Müller S, Kästner M. Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput Methods Appl Mech Eng 2016;305:316–39. link1

[50] Hiemstra RR, Calabrò F, Schillinger D, Hughes TJR. Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput Methods Appl Mech Eng 2017;316:966–1004. link1

[51] Yin G, Xiao X, Cirak F. Topologically robust CAD model generation for structural optimisation. Comput Methods Appl Mech Eng 2020;369: 113102. link1

[52] Xiao M, Liu X, Zhang Y, Gao L, Gao J, Chu S. Design of graded lattice sandwich structures by multiscale topology optimization. Comput Methods Appl Mech Eng 2021;384:113949. link1

[53] Xu M, Xia L, Wang S, Liu L, Xie X. An isogeometric approach to topology optimization of spatially graded hierarchical structures. Compos Struct 2019;225:111171. link1

[54] Liu X, Gao L, Xiao M, Zhang Y. Kriging-assisted design of functionally graded cellular structures with smoothly-varying lattice unit cells. Comput Methods Appl Mech Eng 2022;390:114466. link1

[55] Dbouk T. A review about the engineering design of optimal heat transfer systems using topology optimization. Appl Therm Eng 2017;112:841–54. link1

[56] Lundgaard C, Alexandersen J, Zhou M, Andreasen CS, Sigmund O. Revisiting density-based topology optimization for fluid-structure-interaction problems. Struct Multidiscipl Optim 2018;58(3):969–95. link1

[57] Nishi S, Yamada T, Izui K, Nishiwaki S, Terada K. Isogeometric topology optimization of anisotropic metamaterials for controlling high-frequency electromagnetic wave. Int J Numer Methods Eng 2020;121(6):1218–47. link1

Related Research