Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2022.09.011

Diversity Glass Antennas for Tri-Band WiFi Applications

a State Key Laboratory of Terahertz and Millimeter Waves and Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

b School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou 510006, China

c Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China

d Information and Communication Technology Center, CityU Shenzhen Research Institute, Shenzhen 518057, China

e School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510630, China

Received: 2021-12-10 Revised: 2022-04-25 Accepted: 2022-09-01 Available online: 2022-11-14

Next Previous

Abstract

This paper investigates two novel polarization- and pattern-diversity glass dielectric resonator antennas (DRAs), both of which are for tri-band (2.4, 5.2, and 5.8 GHz) wireless fidelity (WiFi) applications. It also investigates what type of diversity antenna is most suitable for WiFi router applications by comparing the two DRAs, along with a new space-diversity glass DRA. These three diversity glass DRAs are also compared with a commercial space-diversity monopole pair to benchmark the performance of the glass DRA in WiFi router applications. In our polarization-diversity antenna, a double-port feeding scheme is developed to excite different DRA modes. The frequencies of the DRA modes are tuned by using a stepped DRA. For the pattern-diversity design, a stacked DRA is introduced to broaden the bandwidth for both the conical and broadside radiation modes. All three of the new diversity antennas were fabricated and measured to verify the simulations. In our experiment, the bit error rate (BER) of the three diversity glass antennas and the reference space-diversity monopole antenna was also measured, and the results are compared and discussed. It is found that the polarization-diversity omnidirectional DRA has the most stable BER among the three.
 

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

References

[ 1 ] Li Q, Yu X, Xie M, Li N, Dang X. Performance analysis of uplink massive spatial modulation MIMO systems in transmit-correlated Rayleigh channels. China Commun 2021;18(2):27‒39. link1

[ 2 ] Hashemi H. The indoor radio propagation channel. Proc IEEE 1993;81(7):943‒68. link1

[ 3 ] Cox D, Murray R, Arnold H, Norris A, Wazowicz M. Cross-polarization coupling measured for 800 MHz radio transmission in and around houses and large buildings. IEEE Trans Antennas Propag 1986;34(1):83‒7. link1

[ 4 ] Chizhik D, Ling J, Valenzuela RA. The effect of electric field polarization on indoor propagation. In: Proceedings of IEEE 1998 International Conference on Universal Personal Communications; 1998 Oct 5‒9; Florence, Italy; 1998. link1

[ 5 ] Turkmani AMD, Arowojolu AA, Jefford PA, Kellett CJ. An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz. IEEE Trans Veh Technol 1995;44(2):318‒26. link1

[ 6 ] Morshedi A, Torlak M. Measured comparison of dual-branch signaling over space and polarization diversity. IEEE Trans Antennas Propag 2011;59(5):1678‒87. link1

[ 7 ] Fan Y, Liu X, Liu B, Li R. A broadband dual-polarized omnidirectional antenna based on orthogonal dipoles. IEEE Antennas Wirel Propag Lett 2016;15:1257‒60. link1

[ 8 ] Guinvarc’h R, Serhir M, Boust F. A compact dual-polarized 3:1 bandwidth omnidirectional array of spiral antennas. IEEE Antennas Wirel Propag Lett 2016;15:1909‒12. link1

[ 9 ] Ye LH, Cao YF, Zhang XY, Gao Y, Xue Q. Wideband dual-polarized omnidirectional antenna array for base-station applications. IEEE Trans Antennas Propag 2019;67(10):6419‒29. link1

[10] Wu J, Yang S, Chen Y, Qu S, Nie Z. A low profile dual-polarized wideband omnidirectional antenna based on AMC reflector. IEEE Trans Antennas Propag 2017;65(1):368‒74. link1

[11] Wen S, Xu Y, Dong Y. A low-profile dual-polarized omnidirectional antenna for LTE base station applications. IEEE Trans Antennas Propag 2021;69(9):5974‒9. link1

[12] Huang H, Liu Y, Gong S. Broadband dual-polarized omnidirectional antenna for 2G/3G/LTE/WiFi applications. IEEE Antennas Wirel Propag Lett 2016;15:576‒9. link1

[13] Quan X, Li R. A broadband dual-polarized omnidirectional antenna for base stations. IEEE Trans Antennas Propag 2013;61(2):943‒7. link1

[14] Ando A, Kondo A, Kubota S. A study of radio zone length of dual-polarized omnidirectional antennas mounted on rooftop for personal handy-phone system. IEEE Trans Veh Technol 2008;57(1):2‒10. link1

[15] Ta SX, Nguyen DM, Nguyen KK, Dao CN, Nguyen-Trong N. Dual-polarized omnidirectional antenna with simple feed and ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 2020;19(5):871‒5.

[16] Li W, Leung KW, Yang N. Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design. IEEE Trans Antennas Propag 2018;66(3):1189‒97. link1

[17] Zou L, Abbott D, Fumeaux C. Omnidirectional cylindrical dielectric resonator antenna with dual polarization. IEEE Antennas Wirel Propa Lett 2012;11:515‒8. link1

[18] Li Y, Zhang Z, Feng Z, Iskander MF. Design of omnidirectional dual-polarized antenna in slender and low-profile column. IEEE Trans Antennas Propag 2014;62(4):2323‒6. link1

[19] Yang N, Leung KW, Wu N. Pattern-diversity cylindrical dielectric resonator antenna using fundamental modes of different mode families. IEEE Trans Antennas Propag 2019;67(11):6778‒88. link1

[20] Li WW, Leung KW. Omnidirectional circularly polarized dielectric resonator antenna with top-loaded Alford loop for pattern diversity design. IEEE Trans Antennas Propag 2013;61(8):4246‒56. link1

[21] Gray D, Watanabe T. Three orthogonal polarisation DRA-monopole ensemble. Electron Lett 2003;39(10):766‒7. link1

[22] Liu X, Wu Y, Zhuang Z, Wang W, Liu Y. A dual-band patch antenna for pattern diversity application. IEEE Access 2018;6:51986‒93. link1

[23] Dong Y, Choi J, Itoh T. Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications. IEEE Antennas Wirel Propag Lett 2018;17(2): 247‒50. link1

[24] Chi PL, Itoh T. Miniaturized dual-band directional couplers using composite right/ left-handed transmission structures and their applications in beam pattern diversity systems. IEEE Trans Microw Theory Tech 2009;57(5): 1207‒15. link1

[25] Yan S, Vandenbosch GAE. Low-profile dual-band pattern diversity patch antenna based on composite right/left-handed transmission line. IEEE Trans Antennas Propag 2017;65(6):2808‒15. link1

[26] Sun L, Zhang G, Sun B, Tang W, Yuan J. A single patch antenna with broadside and conical radiation patterns for 3G/4G pattern diversity. IEEE Antennas Wirel Propag Lett 2016;15:433‒6. link1

[27] Fang XS, Leung KW, Luk KM. Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna. IEEE Trans Antennas Propag 2014;62(10):4945‒51. link1

[28] Wang W, Zhao Z, Sun Q, Liao X, Fang Z, See KY, et al. Compact quad-element vertically-polarized high-isolation wideband MIMO antenna for vehicular base station. IEEE Trans Veh Technol 2020;69(9):10000‒8. link1

[29] Amjadi SM, Sarabandi K. Mutual coupling mitigation in broadband multipleantenna communication systems using feedforward technique. IEEE Trans Antennas Propag 2016;64(5):1642‒52. link1

[30] Long S, McAllister M, Shen L. The resonant cylindrical dielectric cavity antenna. IEEE Trans Antennas Propag 1983;31(3):406‒12. link1

[31] Mongia RK, Ittipiboon A. Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Trans Antennas Propag 1997;45(9):1348‒56. link1

[32] Sabouni A, Kishk AA. Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging. IEEE Antennas Wirel Propag Lett 2013;12:380‒3. link1

[33] LeungKW LEH, Fang XS. Dielectric resonator antennas: from the basic to the aesthetic. Proc IEEE 2012;100(7):2181‒93. link1

[34] Karaboikis MP, Papamichael VC, Tsachtsiris GF, Soras CF, Makios VT. Integrating compact printed antennas onto small diversity/MIMO terminals. IEEE Trans Antennas Propag 2008;56(7):2067‒78. link1

[35] Hu PF, Pan YM, Zhang XY, Zheng SY. Broadband filtering dielectric resonator antenna with wide stopband. IEEE Trans Antennas Propag 2017;65(4):2079‒84. link1

Related Research