Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2022.10.007

The Flow Battery for Stationary Large-Scale Energy Storage

Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Available online: 2023-02-20

Next Previous

Figures

Fig. 1

References

[ 1 ] Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120(15):7795–866. link1

[ 2 ] Zhang H, Lu W, Li X. Progress and perspectives of flow battery technologies. Electrochem Energy Rev 2019;2(3):492–506. link1

[ 3 ] Kwabi DG, Ji Y, Aziz MJ. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem Rev 2020;120(14):6467–89. link1

[ 4 ] Yao Y, Lei J, Shi Y, Ai F, Lu YC. Assessment methods and performance metrics for redox flow batteries. Nat Energy 2021;6(6):582–8. link1

[ 5 ] Fergus JW. Ceramic and polymeric solid electrolytes for Lithium-ion batteries. J Power Sources 2010;195(15):4554–69. link1

[ 6 ] Ke C, Shao R, Zhang Y, Sun Z, Qi S, Zhang H, et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient Lithium-ion storage. Adv Funct Mater 2022;32(38):2205635. link1

[ 7 ] Ma M, Zhang S, Wang L, Yao Yu, Shao R, Shen L, et al. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond Lithium-based rechargeable batteries. Adv Mater 2021;33(45):2106232. link1

[ 8 ] Cai M, Zhang H, Zhang Y, Xiao B, Wang L, Li M, et al. Boosting the potassiumion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull (Beijing) 2022;67(9):933–45. link1

[ 9 ] Thaller LH, inventor; National Aeronautics and Space Administration (NASA), assignee. Electrically rechargeable redox flow cell. United States patent US 3996064. 1976 Dec 7.

[10] Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334(6058):928–35. link1

[11] Sum E, Skyllas-Kazacos M. A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 1985;15(2–3):179–90. link1

[12] Sum E, Rychcik M, Skyllas-Kazacos M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 1985;16(2): 85–95. link1

[13] Kim KJ, Park MS, Kim YJ, Kim JH, Dou SX, Skyllas-Kazacos M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J Mater Chem A Mater Energy Sustain 2015;3(33):16913–33. link1

[14] Gencten M, Sahin Y. A critical review on progress of the electrode materials of vanadium redox flow battery. Int J Energy Res 2020;44(10):7903–23. link1

[15] Cao L, Skyllas-Kazacos M, Menictas C, Noack J. A review of electrolyte additives and impurities in vanadium redox flow batteries. J Energy Chem 2018;27(5): 1269–91. link1

[16] Choi C, Kim S, Kim R, Choi Y, Kim S, Jung HY, et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renew Sustain Energy Rev 2017;69:263–74. link1

[17] Jirabovornwisut T, Arpornwichanop A. A review on the electrolyte imbalance in vanadium redox flow batteries. Int J Hydrogen Energy 2019;44(45): 24485–509. link1

[18] Zhang H, Zhang H, Li X, Mai Z, Zhang J. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? Energy Environ Sci 2011;4(5):1676–9. link1

[19] Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ Sci 2016;9(2):441–7. link1

[20] Dai Q, Xing F, Liu X, Shi D, Deng C, Zhao Z, et al. High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy Environ Sci 2022;15(4):1594–600. link1

[21] Ruban E, Stepashkin A, Gvozdik N, Konev D, Kartashova N, Antipov A, et al. Carbonized elastomer composite filled with hybrid carbon fillers for vanadium redox flow battery bipolar plates. Mater Today Commun 2021;26:101967. link1

[22] Satola B. Review-bipolar plates for the vanadium redox flow battery. J Electrochem Soc 2021;168(6):060503. link1

[23] Kim S, Yoon Y, Narejo GM, Jung M, Kim KJ, Kim YJ. Flexible graphite bipolar plates for vanadium redox flow batteries. Int J Energy Res 2021;45(7): 11098–108. link1

[24] Gurieff N, Cheung CY, Timchenko V, Menictas C. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes. J Energy Storage 2019;22:219–27. link1

[25] Yuan C, Xing F, Zheng Q, Zhang H, Li X, Ma X. Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved threedimensional transient model. Energy 2020;194:116839. link1

[26] Yang F, Qu D, Chai Y, Zhu M, Fan L. Development of three-dimensional model for the analysis of the mass transport in vanadium redox flow batteries. Int J Hydrogen Energy 2022;47(64):27358–73. link1

[27] Chou YS, Yen SC, Arpornwichanop A, Singh B, Chen YS. Mathematical model to study vanadium ion crossover in an all-vanadium redox flow battery. ACS Sustain Chem Eng 2021;9(15):5377–87. link1

[28] Yin C, Gao Y, Guo S, Tang H. A coupled three dimensional model of vanadium redox flow battery for flow field designs. Energy 2014;74:886–95. link1

[29] Wan S, Jiang H, Guo Z, He C, Liang X, Djilali N, et al. Machine learning-assisted design of flow fields for redox flow batteries. Energy Environ Sci 2022;15(7): 2874–88. link1

[30] Li T, Xing F, Liu T, Sun J, Shi D, Zhang H, et al. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy Environ Sci 2020;13(11):4353–61. link1

[31] O’Meara S. China’s plan to cut coal and boost green growth. Nature 2020;584 (7822):S1–3. link1

[32] Yuan Z, Yin Y, Xie C, Zhang H, Yao Y, Li X. Advanced materials for zinc-based flow battery: development and challenge. Adv Mater 2019;31(50):1902025. link1

[33] Park M, Ryu J, Wang W, Cho J. Material design and engineering of nextgeneration flow-battery technologies. Nat Rev Mater 2017;2(1):16080. link1

[34] Sun C, Zhang H. Review of the development of first-generation redox flow batteries: iron-chromium system. ChemSusChem 2022;15(1):e202101798. link1

Related Research