Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2022.10.008

The Promise of Solid-State Batteries for Safe and Reliable Energy Storage

Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 3K7, Canada

Available online: 2023-02-28

Next Previous


Fig. 1

Fig. 2


[ 1 ] Wang C, Liang J, Zhao Y, Zheng M, Li X, Sun X. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ Sci 2021;14(5):2577–619. link1

[ 2 ] Liu H, Cheng XB, Huang JQ, Yuan H, Lu Y, Yan C, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 2020;5(3):833–43. link1

[ 3 ] Zhang J, Wang C, Zheng M, Ye M, Zhai H, Li J, et al. Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries. Nano Energy 2022;102:107672. link1

[ 4 ] Xia W, Zhao Y, Zhao F, Adair K, Zhao R, Li S, et al. Antiperovskite electrolytes for solid-state batteries. Chem Rev 2022;122(3):3763–819. link1

[ 5 ] Wang C, Liang J, Kim JT, Sun X. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci Adv 2022;8(36):eadc9516. link1

[ 6 ] Li X, Liang J, Chen N, Luo J, Adair KR, Wang C, et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew Chem Int Ed 2019;131 (46):16579–84. link1

[ 7 ] Wang C, Liang J, Luo J, Liu J, Li X, Zhao F, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci Adv 2021;7(37):eabh1896. link1

[ 8 ] Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ Sci 2020;13(5):1429–61. link1

[ 9 ] Zhou L, Zuo TT, Kwok CY, Kim SY, Assoud A, Zhang Q, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat Energy 2022;7(1):83–93. link1

[10] Lu Y, Zhao CZ, Huang JQ, Zhang Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022;6(6): 1172–98. link1

[11] Zhao CZ, Zhao BC, Yan C, Zhang XQ, Huang JQ, Mo Y, et al. Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review. Energy Storage Mater 2020;24:75–84. link1

[12] Wang C, Deng T, Fan X, Zheng M, Yu R, Lu Q, et al. Identifying soft breakdown in all-solid-state lithium battery. Joule 2022;6(8):1770–81. link1

[13] Bates AM, Preger Y, Torres-Castro L, Harrison KL, Harris SJ, Hewson J. Are solidstate batteries safer than lithium-ion batteries? Joule 2022;6(4):742–55. link1

[14] Tan DHS, Chen YT, Yang H, Bao W, Sreenarayanan B, Doux JM, et al. Carbonfree high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021;373(6562):1494–9. link1

[15] Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, et al. High-energy longcycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat Energy 2020;5(4):299–308. link1

Related Research