Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2022.10.012

The Current Status and Development Trend of Perovskite Solar Cells

a Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
b Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
c Optics Valley Laboratory, Wuhan 430074, China

Available online: 2023-02-20

Next Previous

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] British Petroleum (BP). Statistical review of world energy. 70th ed. London: British Petroleum; 2021. link1

[ 2 ] International Renewable Energy Agency (IRENA). Global renewables outlook: energy transformation 2050. 2020 ed. Masdar City: International Renewable Energy Agency; 2020. link1

[ 3 ] Fraunhofer Institute for Solar Energy Systems. Photovoltaics report. Freiburg: Fraunhofer ISE-PUBLIC; 2020. link1

[ 4 ] VDMA. International technology roadmap for photovoltaic (ITRPV) 2019 results. 11th ed. Frankfurt: VDMA; 2020. link1

[ 5 ] National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart [Internet]. Golden, Colorado: NREL; 2022 Sep 20 [cited 2022 Sep 25]. Available from: https://www.nrel.gov/pv/cell-efficiency.html. link1

[ 6 ] Ma C, Park NG. A realistic methodology for 30% efficient perovskite solar cells. Chem 2020;6(6):1254–64. link1

[ 7 ] Ding Y, Ding B, Kanda H, Usiobo OJ, Gallet T, Yang Z, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat Nanotechnol 2022;17(6):598–605. link1

[ 8 ] Leijtens T, Bush KA, Prasanna R, McGehee MD. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy 2018;3:828–38. link1

[ 9 ] Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, et al. Solar cell efficiency tables (version 60). Prog Photovolt Res Appl 2022;30 (7):687–701. link1

[10] Xiao K, Lin YH, Zhang M, Oliver RDJ, Wang X, Liu Z, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 2022;376(6594):762–7. link1

[11] Liu J, Aydin E, Yin J, De Bastiani M, Isikgor FH, Rehman AU, et al. 28.2%- efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 2021;5 (12):3169–86. link1

[12] Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022;603:73–8. link1

[13] Wang L, Zai H, Duan Y, Liu G, Niu X, Ma Y, et al. Cost analysis of perovskite/ Cu(In,Ga)Se2 tandem photovoltaic with module replacement. ACS Energy Lett 2022;7(6):1920–5. link1

[14] Li Z, Zhao Y, Wang X, Sun Y, Zhao Z, Li Y, et al. Cost analysis of perovskite tandem photovoltaics. Joule 2018;2(8):1559–72. link1

[15] Li Z, Wu X, Wu S, Gao D, Dong H, Huang F, et al. An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy 2022;93:106853. link1

[16] Chao L, Niu T, Gao W, Ran C, Song L, Chen Y, et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv Mater 2021;33(14):2005410. link1

[17] Chen B, Fei C, Chen S, Gu H, Xiao X, Huang J. Recycling lead and transparent conductors from perovskite solar modules. Nat Commun 2021;12(1):5859. link1

[18] Wu T, Liu X, Luo X, Lin X, Cui D, Wang Y, et al. Lead-free tin perovskite solar cells. Joule 2021;5(4):863–86. link1

[19] He X, Chen J, Ren X, Zhang L, Liu Y, Feng J, et al. 40.1% record low-light solarcell efficiency by holistic trap-passivation using micrometer-thick perovskite film. Adv Mater 2021;33(27):2100770. link1

Related Research