Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 3 doi: 10.15302/J-ENG-2015032

Single-Seed Casting Large-Size Monocrystalline Silicon for High-Efficiency and Low-Cost Solar Cells

1 Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2 National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan

Received: 2015-06-18 Revised: 2015-07-01 Accepted: 2015-09-10 Available online: 2015-09-30

Next Previous

Abstract

To grow high-quality and large-size monocrystal-line silicon at low cost, we proposed a single-seed casting technique. To realize this technique, two challenges—polycrystalline nucleation on the crucible wall and dislocation multiplication inside the crystal—needed to be addressed. Numerical analysis was used to develop solutions for these challenges. Based on an optimized furnace structure and operating conditions from numerical analysis, experiments were performed to grow monocrystalline silicon using the single-seed casting technique. The results revealed that this technique is highly superior to the popular high-performance multicrystalline and multiseed casting mono-like techniques.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig.6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Fraunhofer Institute for Solar Energy Systems ISE. Photovoltaic report. Freiburg: Fraunhofer ISE, 2014: 3–4

[ 2 ] N. Stoddard, Casting single crystal silicon: Novel defect profiles from BP Solar’s Mono2 TM wafers. Solid State Phenom., 2007, 131−133: 1–8

[ 3 ] N. Stoddard, B. Wu, L. Maisano, R. Russell, R. Clark, J. M. Fernandez. The leading edge of silicon casting technology and BP Solar’s Mono2 wafers. In: B. L. Sopori, , eds. Proceedings of the 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes. Colorado: National Renewable Energy Laboratory, 2008: 7–14

[ 4 ] N. Stoddard, Evaluating BP Solar’s Mono2 TM materials: Lifetime and cell electrical data. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. Philadelphia: IEEE, 2009: 1163–1168

[ 5 ] D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang. Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification. J. Cryst. Growth, 2014, 386: 52–56 link1

[ 6 ] X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. Sol. Energ. Mat. Sol. C., 2012, 101: 95–101 link1

[ 7 ] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries. Appl. Phys. Express, 2013, 6(2): 025505 link1

[ 8 ] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Mono-like silicon growth using functional grain boundaries to limit area of multicrystalline grains. J. Photovolt., 2014, 4(1): 84–87 link1

[ 9 ] M. G. Tsoutsouva, Segregation, precipitation and dislocation generation between seeds in directionally solidified mono-like silicon for photovoltaic applications. J. Cryst. Growth, 2014, 401: 397–403 link1

[10] G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel. Study of evolution of dislocation clusters in high performance multicrystalline silicon. Sol. Energ. Mat. Sol. C., 2014, 130: 679–685

[11] Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. Res. Appl., 2015, 23(3): 340–351 link1

[12] B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Dislocation analysis of a new method for growing large-size crystals of monocrystalline silicon using a seed casting technique. Cryst. Growth Des., 2012, 12(12): 6144–6150 link1

[13] B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Reduction of polycrystalline grains region near the crucible wall during seeded growth of monocrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2012, 352(1): 47–52 link1

[14] V. R. Voller, M. Cross, N. C. Markatos. An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng., 1987, 24(1): 271–284

[15] J. P. Garandet. On the thermal stresses in vertical gradient freeze furnaces. J. Cryst. Growth, 1989, 96(3): 680–684 link1

[16] Y. Miyamura, Crystal growth of 50 cm square mono-like Si by directional solidification and its characterization. J. Cryst. Growth, 2014, 401: 133–136 link1

[17] B. Gao, S. Nakano, K. Kakimoto. Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2011, 318(1): 255–258 link1

Related Research