Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2021, Volume 23, Issue 4 doi: 10.15302/J-SSCAE-2021.04.003

The Realistic Pattern and Path Choice of the Development of Agricultural Software Industry

1. Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China; 

2. Beijing Technology Innovation Strategic Alliance for Intelligence Internet of Things Industry in Agriculture, Beijing 100097, China

Funding project:中国工程院咨询项目“智慧农业发展战略研究”(2019-ZD-05) Received: 2021-04-30 Revised: 2021-06-10 Available online: 2021-07-27

Next Previous

Abstract

As the integration of information technology and agricultural development accelerates, the agricultural software industry has emerged to support the development of smart agriculture. In this article, we first analyze the development status of and challenges faced by China’s agricultural software industry by analyzing the development strategies of the industry in China and abroad and using literature review and survey data. Subsequently, we propose the strategic goals, major engineering projects, and policy measures for the development of China’s agricultural software industry. China’s agricultural software industry has a large gap with other countries in terms of technology development and promotion, enterprise operation, and user accumulation. The major challenges include difficulty in development, weak innovation capabilities, low return on investment, and insufficient protection of intellectual property rights, restricting the growth of China’s agricultural software industry. China should regard the software development of agricultural technologies as the main line and focus on strengthening the innovative capabilities of its agricultural software industry by 2035. The major engineering projects we proposed involve agricultural enabling software and platform development, precision agriculture management software application promotion, agricultural software industry cluster establishment, and agricultural software enterprise cultivation. Furthermore, China should improve its policy support system, strengthen the overall coordination mechanism, optimize the discipline system, and strengthen talent training for the agricultural software industry.

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] 吕德功, 王福怀. 科技兴农中的“软件” 开发与效用 [J]. 农业系 统科学与综合研究, 1992 (1): 1–4. Lyu G D, Wang F H. The development and utility of software in developing agriculture by science and technology [J]. System Sciences and Comprehensive Studies in Agriculture, 1992 (1): 1-4. link1

[ 2 ] 随学庆. 农电远程报表系统的开发与应用 [J]. 农村电气化, 2002 (3): 19-20. Sui X Q. Development and application of remote report system for rural power [J]. Rural Electrification, 2002 (3): 19-20. link1

[ 3 ] 张苏, 杨太明, 黄向荣, 等. 江淮农业气象综合服务自动化系统 [J]. 安徽农业科学, 2005, 33(3): 482-483. Zhang S, Yang T M, Huang X R, et al. Study on the auto-system of integrated service of agricultural meteorology [J]. Journal of Anhui Agricultural Sciences, 2005, 33(3): 482-483. link1

[ 4 ] 梁正友. 农务管理系统的软件体系结构研究 [J]. 计算机工程与 设计, 2005, 26(12) : 3267-3269. Liang Z Y. Software architecture research on farming affair management system [J]. Computer Engineering and Design, 2005, 26(12): 3267-3269. link1

[ 5 ] 张宇. 农技服务基站设计与研究 [J]. 黑龙江农业科学, 2009 (4): 138-140. Zhang Y. Research and design of agricultural server base station [J]. Heilongjiang Agricultural Sciences, 2009 (4): 138-140. link1

[ 6 ] 赵小中, 平本强, 胡波, 等. 基于PC端的农残速测仪智能化检测 管理系统设计与应用 [J]. 中国农机化学报, 2020, 41(2): 60-66. Zhao X Z, Ping B Q, Hu B, et al. Development and application of intelligent detection and management system for rapid pesticide residue detector based on PC [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 60-66. link1

[ 7 ] 王大正, 任博, 刘珠明. 不同类型农情监测系统间数据共享方案 研究 [J]. 中国农机化学报, 2019, 40(12): 154-159. Wang D Z, Ren B, Liu Z M. Study on data sharing scheme among different types of agricultural situation monitoring systems [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 154-159. link1

[ 8 ] 翟晨, 彭彦昆, Chao Kuanglin, 等. 农畜产品安全无损检测扫 描式拉曼光谱成像系统设计 [J]. 农业机械学报, 2016, 47(12): 279-284. Zhai C, Peng Y K. Chao K L, et al. Design of line-scan raman imaging system for nondestructive detection of agricultural and livestock products safety [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 279-284. link1

[ 9 ] 许世卫. 中国农业监测预警的研究进展与展望 [J]. 农学学报, 2018, 8(1): 197-202. Xu S W. Review on research in agricultural monitoring and early warning in China [J]. Journal of Agriculture, 2018, 8(1): 197-202. link1

[10] 赵广飞. 北京建成全国首个大型育种云服务平台 [N]. 农民日 报, 2016-01-19(03). Zhao G F. Beijing built the first large-scale breeding cloud service platform in China [N]. Farmer’s Daily2016-01-19(03).

[11] 王亮, 李秀峰, 王文生. 农技云平台知识地图的设计与实现 [J]. 中国农业科技导报, 2015, 17(2): 87-93. Wang L, Li X F, Wang W S. Design and implementation of knowledge map on cloud platform of agricultural technology extension [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 87-93. link1

[12] 王俊豪, 周晟佳. 中国数字产业发展的现状、特征及其溢出效应 [J]. 数量经济技术经济研究, 2021, 38(3): 103-119. Wang J H, Zhou S J. The current situation, characteristics and spillover effect of the development of digital industry in China [J]. The Journal of Quantitative & Technical Economics, 2021, 38(3): 103-119. link1

[13] Hagedoorn J, Schakenraad J. The effect of strategic technology alliances on company performance [J]. Strategic Management Journal, 1994, 15: 291-309. link1

[14] 赵春江. 中国农业软件产业展望 [C]. 北京: 2003年中国数字农 业与农村信息化发展战略研讨会, 2003. Zhang C J. Prospect of agricultural software industry in China [C]. Beijing: 2003 China Digital Agriculture and Rural Informatization Development Strategy Symposium, 2003.

[15] 陈庆贵, 洪文秋. 基于“农远工程” 技术环境的自适应引导式 教学设计生成系统的设计与应用 [J]. 中国电化教育, 2013 (8): 100-103. Chen Q G, Hong W Q. Design and application of adaptive guidance based on the technology environment of “agricultural and remote engineering” [J]. China Educational Technology, 2013 (8): 100-103. link1

[16] 范蓓蕾, 吴平, 李林. 基于组件的农情遥感监测信息系统的集成 开发 [J]. 微计算机信息, 2006, 22(9): 255-257. Fan B L, Wu P, Li L. Integration system of agriculture supervision based on COM GIS [J]. Microcomputer Information, 2006, 22(9): 255-257. link1

[17] 安进强, 魏凯, 王立乾, 等. 基于物联网的精确灌溉控制技术研 究 [J]. 西北农林科技大学学报(自然科学版), 2013, 41(12): 220- 226. An J Q, Wei K, Wang L Q, et al. Internet of things based accurate automation irrigation [J]. Journal of Northwest A & F University(Natural Science Edition), 2013, 41(12): 220-226. link1

[18] 中华人民共和国工业和信息化部. 2019年软件和信息技术服务 业统计年报 [EB/OL]. (2020-09-30) [2021-04-12]. https://www. miit.gov.cn/jgsj/xxjsfzs/xyyx/art/2020/art_7431516acb7944b38db 842281c7eebba.html. Ministry of Industry and Information Technology of the People’s Republic China. Annual report of software and information technology service industry in 2019 [EB/OL]. (2020-09-29) [2021- 04-12]. https://www.miit.gov.cn/jgsj/xxjsfzs/xyyx/art/2020/art_74 31516acb7944b38db842281c7eebba.html. link1

[19] 郝亚玲, 朱欣娟, 吴晓军. 面向3D虚拟展示的软件定制化系统研 究 [J]. 计算机工程与应用, 2021, 57(5): 271-278. Hao Y L, Zhu X J, Wu X J. Research on software customizing system for 3D virtual display [J]. Computer Engineering and Applications, 2021, 57(5): 271-278. link1

[20] 吴文峻, 于鑫, 蒲彦均, 等. 微服务时代的复杂服务软件开发 [J]. 计算机科学, 2020, 47(12): 11-17. Wu W J, Yu X, Pu Y J, et al. Development of complex service software in microservice era [J]. Computer Science, 2020, 47(12): 11-17. link1

[21] 李娜, 王志杰, 丁克勤. 粮食储备库分布式粮堆湿度监控系统软 件开发 [J]. 中国粮油学报, 2019, 34(S2): 1-6. Li N, Wang Z J, Ding K Q. Development of distributed humidity monitor and control system software for grain bulk in grain reserve bank [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(S2): 1-6. link1

Related Research