Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 1 doi: 10.15302/J-SSCAE-2023.07.003

Ultra-Precision Machining Technology and Equipment for High-End Optical Elements

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 

2. Collaborative Innovation Center of High-End Manufacturing Equipment, Xi’an Jiaotong University, Xi’an 710054, China; 

3. State Key Laboratory for Manufacturing Systems Engineering, Xi’an 710054, China

Funding project:Chinese Academy of Engineering project “Strategic Research on Precision Ultra-Precision Machining Technology and Equipment for High-End Optical Systems” (2022-XY-02) and “Research on the Development Strategy of High-End Equipment for Mother Machines” (2022-XY-114) Received: 2022-06-05 Revised: 2022-10-08 Available online: 2022-11-25

Next Previous

Abstract

High-end optical elements determine the performance of high-end equipment. Researching the ultra-precision machining technology and equipment for high-end optical elements is crucial for strengthening China's manufacturing industry and satisfying the requirements of the high-end equipment industry. In this study, the ultra-precision machining methods and equipment for optical elements, high-performance basic components, and measurement methods and equipment used in ultra-precision optical machining are analyzed. Five development trends are summarized including extremalization of precision and size, integration of shape and performance, compounding of machining technologies, integration of machining and measurement, and intellectualization of equipment and processes. Through extensive survey and discussions, a technology roadmap for ultra-precision manufacturing of high-end optical elements by 2035 is proposed from the aspects of demand, goals, products, key technologies, application demonstrations, and guarantees. Furthermore, several development suggestions are proposed, including (1) optimizing the innovation system and establishing technical alliances by organizing superior resources, (2) increasing resource guarantees and laying out plans on basic and technical research,(3) strengthening talent cultivation to expand the scale of the multi-level talent team, and (4) building a solid foundation for industrial development and cultivating small-sized leading enterprises.

Figures

图1

References

[ 1 ] Campbell J H, Hawley-Fedder R, Stolz C J, et al‍. NIF optical materials and fabrication technologies: An overview [C]‍. San Jose: International Society for Optics and Photonics, 2004‍.

[ 2 ] 江少恩, 丁永坤, 缪文勇, 等‍‍. 我国激光惯性约束聚变实验研究进展 [J]‍. 中国科学: 物理学力学天文学, 2009, 3911: 1571‒1583‍.
Jiang S E, Ding Y K, Miao W Y, et al‍. Recent progress of inertial confinement fusion experiments in China [J]‍. Scientia Sinica Physica, Mechanica Astronomica, 2009, 3911: 1571‒1583‍.

[ 3 ] Gopalaswamy V, Betti R, Knauer J P, et al‍. Tripled yield in direct-drive laser fusion through statistical modeling [J]‍. Nature, 2019, 565(7741): 581‒586‍.

[ 4 ] Schmitt J H M M, Lemen J R, Zarro D‍. A solar flare observed with the SMM and Einstein satellites [J]‍. Solar Physics, 1989, 121(1): 361‒373‍.

[ 5 ] 李大庆‍. 慧眼卫星成功进行X射线脉冲星导航在轨实验 [J]‍. 空间科学学报, 2019 5: 565‍.
Li D Q‍. Huiyan satellite successfully conducts on-orbit experiment of X-ray pulsar navigation [J]‍. Chinese Journal of Space Science, 2019 5: 565‍.

[ 6 ] Yao Y W, Chalifoux B, Heilmann R K, et al‍. Progress of coating stress compensation of silicon mirrors for Lynx x-ray telescope mission concept using thermal oxide patterning method [J]‍. Journal of Astronomical Telescopes Instruments and Systems, 2019, 5 (2): 1‒10‍.

[ 7 ] Civitani M M, Parodi G, Toso G, et al‍. Progress on high-resolution thin full monolithic shells made of glass for Lynx [C]‍. San Diego: Conference on Optics for EUV, X-Ray, and Gamma-Ray Astronomy, 2021‍.

[ 8 ] Levinson H J‍. High-NA EUV lithography: Current status and outlook for the future [J]‍. Japanese Journal of Applied Physics, 2022, 61: 1‒12‍.

[ 9 ] Martin L, Peter K, Hans-Juergen M, et al‍. Optics for EUV production [J]‍. Proceedings of SPIE‒The International Society for Optical Engineering, 2010, 7636(1): 1‒12‍.

[10] 张德福, 李显凌, 芮大为, 等‍. 193 nm投影光刻物镜光机系统关键技术研究进展 [J]‍. 中国科学: 技术科学, 2017, 476: 565‒581‍.
Zhang D F, Li X L, Rui D W, et al‍. Key technology progress of optomechanical systems in 193 nm projection objective [J]‍. Scientia Sinica Technologica, 2017, 476: 565‒581‍.

[11] 李国杰‍. "中兴事件" 给科技工作的启示 [J]‍. 科技导报, 2018, 3613: 1‍.
Li G J‍. The enlightenment of "ZTE incident" to science and technology work [J]‍. Science and Technology Review, 2018, 3613: 1‍.

[12] 王磊, 卢秉恒‍. 中国工作母机产业发展研究 [J]‍. 中国工程科学, 2020, 222: 29‒37‍.
Wang L, Lu B H‍. Research on the development of machine tool industry in China [J]‍. Strategic Study of CAE, 2020, 222: 29‒37‍.

[13] 蔡锐龙, 李晓栋, 钱思思‍. 国内外数控系统技术研究现状与发展趋势 [J]‍. 机械科学与技术, 2016, 354: 493‒500‍.
Cai R L, Li X D, Qian S S‍. Numerical control system: State of art and trends [J]‍. Mechanical Science and Technology for Aerospace Engineering, 2016, 354: 493‒500‍.

[14] 孟博洋, 李茂月, 刘献礼, 等‍. 机床智能控制系统体系架构及关键技术研究进展 [J]‍. 机械工程学报, 2021, 579: 147‒166‍.
Meng B Y, Li M Y, Liu X L, et al‍. Research progress on the architecture and key technologies of machine tool intelligent control system [J]‍. Journal of Mechanical Engineering, 2021, 579: 147‒166‍.

[15] Geng Z C, Tong Z, Jiang X Q‍. Review of geometric error measurement and compensation techniques of ultra-precision machine tools [J]‍. Light: Advanced Manufacturing, 2021, 2(2): 211‒227‍.

[16] 房丰洲‍. 原子及近原子尺度制造——制造技术发展趋势 [J]‍. 中国机械工程, 2020, 319: 1009‒1021‍.
Fang F Z‍. On atomic and close-to-atomic scale manufacturing: Development trend of manufacturing technology [J]‍. Chinese Mechanical Engineering, 2020, 319: 1009‒1021‍.

[17] 郭东明, 孙玉文, 贾振元‍. 高性能精密制造方法及其研究进展 [J]‍. 机械工程学报, 2014, 5011: 119‒134‍.
Guo D M, Sun Y W, Jia Z Y‍. Methods and research progress of high-performance manufacturing [J]‍. Chinese Journal of Mechanical Engineering, 2014, 5011: 119‒134‍.

[18] 郭东明‍. 高性能精密制造 [J]‍. 中国机械工程, 2018, 297: 757‒765‍.
Guo D M‍. High-performance precision manufacturing [J]‍. Chinese Mechanical Engineering, 2018, 297: 757‒765‍.

[19] 臧冀原, 刘宇飞, 王柏村, 等‍. 面向2035的智能制造技术预见和路线图研究 [J]‍. 机械工程学报, 2022, 584: 285‒304‍.
Zang J Y, Liu Y F, Wang B C, et al‍. Technology forecasting and roadmapping of intelligent manufacturing by 2035 [J]‍. Chinese Journal of Mechanical Engineering, 2022, 584: 285‒304‍.

[20] 前瞻产业研究院‍. 2022—2027中国光学测试仪器行业市场前瞻与投资规划分析报告 [R]‍. 深圳: 前瞻产业研究院, 2022‍.
Prospective Industry Research Institute‍. Analysis report of optical testing instrument industry market prospect and investment planning in China from 2022 to 2027 [R]‍. Shenzhen: Prospective Industry Research Institute, 2022‍.

Related Research