Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2019, Volume 20, Issue 6 doi: 10.1631/FITEE.1800308

An online error calibration method for spaceflight TT&C systems based on LEO-ground DDGPS

Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China

Available online: 2019-08-01

Next Previous

Abstract

To overcome the shortcomings of the traditional measurement error calibration methods for spaceflight telemetry, tracking and command (TT&C) systems, an online error calibration method based on low Earth orbit satellite-to-ground doubledifferential GPS (LEO-ground DDGPS) is proposed in this study. A fixed-interval smoother combined with a pair of forward and backward adaptive robust Kalman filters (ARKFs) is adopted to solve the LEO-ground baseline, and the ant colony optimization (ACO) algorithm is used to deal with the ambiguity resolution problem. The precise baseline solution of DDGPS is then used as a comparative reference to calibrate the systematic errors in the TT&C measurements, in which the parameters of the range error model are solved by a batch least squares algorithm. To validate the performance of the new online error calibration method, a hardware-in-the-loop simulation platform is constructed with independently developed spaceborne dual-frequency GPS receivers and a Spirent GPS signal generator. The simulation results show that with the fixed-interval smoother, a baseline estimation accuracy (RMS, single axis) of better than 10 cm is achieved. Using this DDGPS solution as the reference, the systematic error of the TT&C ranging system is effectively calibrated, and the residual systematic error is less than 5 cm.

Related Research