Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2023, Volume 24, Issue 1 doi: 10.1631/FITEE.2200082

High linearity U-band power amplifier design: a novel intermodulation point analysis method

南京理工大学电子工程与光电技术学院,中国南京市,210094

Received: 2022-03-04 Accepted: 2023-01-21 Available online: 2023-01-21

Next Previous

Abstract

A ’s linearity determines the emission signal’s quality and the efficiency of the system. Nonlinear distortion can result in system bit error, out-of-band radiation, and interference with other channels, which severely influence communication system’s quality and reliability. Starting from the third-order intermodulation point of the s, the circuit’s nonlinearity is compensated for. The analysis, design, and implementation of linear class AB mm-Wave s based on GlobalFoundries 45 nm technology are presented. Three single-ended and differential stacked s have been implemented based on cascode cells and triple cascode cells operating in U-band frequencies. According to nonlinear analysis and on-wafer measurements, designs based on triple cascode cells outperform those based on cascode cells. Using single-ended measurements, the differential achieves a measured peak power-added efficiency (PAE) of 47.2% and a saturated output power () of 25.2 dBm at 44 GHz. The amplifier achieves a higher than 23 dBm and a maximum PAE higher than 25% in the measured bandwidth from 44 GHz to 50 GHz.

Related Research