Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2004, Volume 6, Issue 1

Fundamentals of the Unified Technology Combining Plastic Forming and Heat Treatment of Materials

School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China

Funding project:中国工程院化工、冶金与材料工程学部第4届学术会议特邀报告,2003年10月,长沙 Received: 2003-10-19 Available online: 2004-01-20

Next Previous

Abstract

Fundamentals of the unified technology combining plastic forming and heat treatment of materials mainly consist of the metallurgical and mechanical interactions between stress, transformation and deformation, modeling as well as simulations of microstructural and property evolutions. In the present work, taking steel for example, the literatures on ferrite, pearlite, bainite and martensitic transformations under stresses are introduced. Kinetics models and computer simulation of microstructural evolution of ferrite and pearlite transformations under stresses in a 0.38C-Cr-Mo steel are suggested. A discussion is given on deficiency and the modification of Scheil's additivity hypothesis. Phase field theory and its application, as well as the perspective in further study of the unified technology are briefly presented.

Figures

图1

图2

图3

References

[ 1 ] Denis S, Gautier E, Simon A, Beck G. Stress-phase transformation basic principles, modeling and calculation of internal stresses[J].Mater Sci Technol, 1985, (1) :805~976

[ 2 ] Patel J R, Cohen M. Criterion for the action of applied stress in the martensitic transformation[J].Acta Metall, 1953, (1) : 531~538 link1

[ 3 ] Kakeshita T, Shimizu K. Effects of hydrostatic pressure on martensitic transformation[J].Mater Trans JIM, 1997, (8) : 668~681

[ 4 ] Jepson M D, Thompson F C. The acceleration of the rate of isothermal transformation of austenite[J].JISI, 1949, 162: 49~56

[ 5 ] Kehl G L, Bhattacharyya S. The influence of tensile stress on the isothermal decomposition of austenite to ferrite and pearlite[J].Trans ASM, 1956, 48: 234~248

[ 6 ] Christian J W. In The Theory of Transformations in Metals and Alloys[M]. 3rd Edition. London: Pergamon, 2002. Part I Chp 10~12

[ 7 ] Inoue T, Wang Z G. Coupling between stress, temperature, and metallic structures during processes involving phase transformations[J]. Mater Sci Technol, 1985, (1) : 845~850

[ 8 ] Denis S, Sj⌀str⌀m S, Simon A. Coupled temperature, stress, phase transformation calculation model numerical illustration of the internal tresses evolution during cooling of a eutectoid caebon steel cylinder[J]. Metall Trans, 1987, 18A: 1203~1212

[ 9 ] 李自刚. 工模具钢热变形的物理模拟和数值模拟[D]. 上海:交通大学, 1998

[10] 叶健松. 应力状态下0.38C-Cr-Mo钢的铁素体/珠光体相变动力学及其模拟[D]. 上海: 交通大学, 2003

[11] Denis S, Gautier E, Simon A, Beck G. Influence of stresses on the kinetics of pearlitic transformation during continuous cooling[J]. Acta Metall, 1987, 35: 1621~1632 link1

[12] Ye Y S, Chang H B, Hsu T Y (Xu Zuyao) . On the application of the additivity rule pearlitic transformation in low alloys[J]. Metall Mater Trans A, 2003, 34A: 1259~1264

[13] 高宁, 刘庄, 余永平. 2.25Cr-1Mo钢相变塑性的实验研究[J]. 材料热处理学报, 2001, 22 (3) :1~4

[14] Bhadeshia H K D H. Bainite in Steels[M]. 2nd Ed. Cambridge: The University Press, 2001. 207~215

[15] Umemoto M, Bando S, Tamura I. Morphology and transformation kinetics of bainite in a Fe-Ni-C and Fe-Ni-Cr-C alloys[A]. Proc Inter Conf Martensitic Transformations, 1986[C]. The Jpn Inst Metals, 1987. 595~600 link1

[16] 徐祖耀, 马氏体相变与马氏体[M], 第二版, 北京: 科学出版社, 1999 link1

[17] Gautier E , Simon A, Collette G, Beck G. Effect of strain on martensitic transformation in a Fe-Ni-Mo-C alloy with a high Ms temperature[J]. J de Phys, Colloq C4, Suppl No. 12, 1982, 43: C4-473~477

[18] Zhang X M, Gautier E, Simon A. Martensite morphology and habit plane transition during tensile tests for Fe-Ni-C alloys[J]. Acta Metall, 1989, 37: 477~485

[19] Zhang X M, Gautier E, Simon A. Orientation relationships of deformations induces martensite in Fe-Ni-C alloys[J]. Acta Metall, 1989, 37: 487~497 link1

[20] Zhang X M, Li D F, Xing Z S, Gautier E, Zhang J S, Simon A. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys[J]. Acta Metall Mater, 1993, 41: 1693~1699

[21] Gautier E, Zhang J S, Zhang X M. Martensitic transformation under stress in ferrous alloys, mechanical behaviour and resulting morphologies[J]. J de Phys IV Colloq C8, Suppl J de Phys III No 12, 1995, (5) : C8-41~50

[22] Zhang M X, Kelly P M, Gates J D. A model of stress induces martensitic transformation in Fe-Ni-C alloy[J]. Mater Sci Engr, 1999, A273~275: 251~256

[23] Kajiwara S. J. Effect of applied stress on nucleation rate of isothermal martensitic transformation[J]. de Phys, 1982, Colloq C4 Suppl No12, 43: C4-97~102

[24] 徐祖耀. 相变原理[M]. 北京:科学出版社, 2000. 461~472

[25] Chen L Q, Wang Y, The continuum field approach to modeling microstructural evolution[J]. JOM, 1996, Dec:13~18

[26] Wang Y, Khachaturyan A G. Three-dimensional field model and computer modeling of martensitic transformations[J]. Acta Mater, 1997, 45: 759~773

Related Research