Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2015, Volume 17, Issue 2

The roles of volatiles in mineralizations of magmatic Ni-Cu-PGE sulfide deposits—Implications for potential metallogenic mechanism of super-large scale magmatic deposits in small magma

1. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China;

2. Xi'an Institute of Geology and Mineral Resources, Xi'an 710054, China

Funding project:国家自然科学(41372095, 41472070, 41072056);高等学校博士学科点专项科研(20120211110023);中国地质调查局项目(12120114044401) Received: 2014-11-20 Available online: 2015-01-30 13:08:18.000

Next Previous

Abstract

The resources of nickel and platinum group element (PGE) are contributed by super-large scale magmatic Ni-PGE sulfide deposits in the world. In this paper, on the basis of the behaviors of Ni, Cu and PGE in the processes of partial melting, magma crystallization and sulfide segregation etc. mantle magmatic events, we summarized the types and scales of ore-forming magma, the gathering way of ore-forming metal elements, the controlling factors of sulfur saturation and the immiscibility of the sulfide liquid phase during the magmatism of Ni-Cu-PGE sulfide deposits, and discussed the role of volatiles in the transport and enrichment of ore-forming metals. It is concluded that the high degree of partial melting (i.e., magma with high Mg content) in mantle is crucial to gather the huge amounts of Ni and PGE from mantle sulfide and olivine into ore-forming magma, and the sulfide segregation will form super-large scale Ni-PGE sulfide deposits in a large scale layered (or conduit) intrusion. It is inferred that the supercritical fluid (volatile) in mantle can carry and aggregate a large number of Ni-PGE metals from a large volume of mantle, and make a great contribution to the formation of Ni-PGE sulfide deposits. It is possible to be the metallogenic mechanism of magmatic Ni-PGE sulfide deposits by small mantle derived magma (i.e., small intrusion).

Figures

图1

图2

References

[ 1 ] 李文渊. 岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J]. 西北地 质,2007,40(2):1-18. link1

[ 2 ] 宋谢炎,胡瑞忠,陈列锰. 铜、镍、铂族元素地球化学性质及其 在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J]. 地 学前缘,2009,16(4):287-305. link1

[ 3 ] Naldrett A J. Magmatic Sulfide Deposits:Geology,Geochemistry and Exploration [M]. Berlin:Springer Verlag,Heidelberg, 2004.

[ 4 ] Naldrett A J. World- class Ni- Cu- PGE deposits:Key factors in their genesis [J]. Mineralium Deposita,1999,34(3):227-240. link1

[ 5 ] Dietz R S. Sudbury structure as an astrobleme [J]. Journal of Geology,1964,72(4):412-434. link1

[ 6 ] Lambert D D,Foster J G,Frick L R,et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits;new insights from the Re-Os isotope system [J]. Economic Geology,1998,93(2):121-136. link1

[ 7 ] Evans-Lamswood D M,Butt D P,Jackson R S,et al. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit,Labrador [J]. Economic Geology,2000, 95(4):749-769. link1

[ 8 ] Tang Qingyan,Li Chusi,Zhang Mingjie,et al. Detrital zircon constraint on the timing of amalgamation between Alxa and Ordos,with exploration implications for Jinchuan-type Ni-Cu ore deposit in China [J]. Precambrian Research,2014,255:748- 755. link1

[ 9 ] Boudreau A E,McCallum I S. Concentration of platinum-group elements by magmatic fluids in layered intrusions [J]. Economic Geology,1992,87(7):1830-1848. link1

[10] Fleet M E,Wu T W. Volatile transport of precious metals at 1 000 ℃:Speciation,fractionation,and effect of base- metal sulfide [J]. Geochimica et Cosmochimica Acta,1995,59(3): 487-495. link1

[11] Fleet M E,Crocket J H,Stone W E. Partitioning of platinumgroup elements (Os,Ir,Ru,Pt,Pd) and gold between sulfide liquid and basalt melt [J]. Geochimica et Cosmochimica Acta, 1996,60(13):2397-2412. link1

[12] Blackburn J M,Long D P,Cabanas A,et al. Deposition of conformal copper and nickel films from supercritical carbon dioxide [J]. Science,2001,294(5540):141-145. link1

[13] Fiorentini M L,Beresford S W. Role of volatiles and metasomatized subcontinental lithospheric mantle in the genesis of magmatic Ni-Cu-PGE mineralization [J]. Terra Nova,2008,20(5): 333-340. link1

[14] Barnes S J,Picard C P. The behavior of platinum- group elements during partial melting,crystal fractionation,and sulfide segregation [J]. Geochimica et Cosmochimica Acta,1993,57 (1):79-87. link1

[15] Snow J E,Schmidt G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle [J]. Nature,1998,391 (6663):166-169. link1

[16] Day J M D,Pearson D G,Taylor L A. Highly siderophile element constraints on accretion and differentiation of the EarthMoon System [J]. Science,2007,315(5809):217-219. link1

[17] Yuan Feng,Zhou Taofa,Zhang Dayu,et al. Siderophile and chalcophile metal variations in basalts:Implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province,Xinjiang Province,China [J]. Ore Geology Reviews,2012,45:5-15. link1

[18] Kamenetsky V S,Maas R,Fonseca R O C,et al. Noble metals potential of sulfide-saturated melts from the subcontinental lithosphere [J]. Geology,2013,41(5):575-578. link1

[19] Peach C L,Mathez E A,Keays R R. Sulfide melt silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB [J]. Geochimica et Cosmochimica Acta,1990,54(12):3379-3389. link1

[20] Bezmen N I,Asif M,Brugmann G E,et al. Distribution of Pd,Rh,Ru,Ir,Os and Au between sulfide and silicate melts [J]. Geochimica et Cosmochimica Acta,1994,58(4):1251- 1260. link1

[21] Keays R R. The role of komatiitic and picritic magmatism and Ssaturation in the formation of ore-deposits [J]. Lithos,1995,34 (1-3):1-18. link1

[22] Chai G,Naldrett A J. The Jinchuan ultramafic intrusion:Cumulate of a high- Mg basaltic magma [J]. Journal of Petrology, 1992,33(2):277-303. link1

[23] Arndt N. The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits [J]. Economic Geology, 2013,108(8):1953-1970. link1

[24] Ripley E M,Li C. Sulfide saturation in mafic magmas is external sulfur required for magmatic Ni-Cu- (PGE) ore genesis [J]. Economic Geology,2013,108(1):45-58. link1

[25] Barnes S J,Makovicky E,Makovicky M,et al. Partition coefficients for Ni,Cu,Pd,Pt,Rh and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid [J]. Canadian Journal of Earth Sciences,1997,34 (4):366-374. link1

[26] Maier W D,Groves D I. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits [J]. Mineralium Deposita,2011,46(8):841-857. link1

[27] Scoates J S,Friedman R M. Precise age of the platiniferous Merensky reef,Bushveld complex,south Africa,by the U-Pb zircon chemical abrasion ID-TIMS technique [J]. Economic Geology,2008,103(3):465-471. link1

[28] Premo W R,Premo W R,Helz R T,et al. U-Pb and Sm-Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains,Montana [J]. Geology,1990,18(11): 1065-1068. link1

[29] Paces James B,Miller Jr James D. Precise U-Pb ages of Duluth Complex and related mafic intrusions,northeastern Minnesota: Geochronological insights to physical,petrogenetic,paleomagnetic , and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System [J]. Journal of Geophysical Research:Solid Earth (1978—2012),2012,98(B8):13997- 14013 link1

[30] Kamo L,Czamanske G K,Krogh T E. A minimum U-Pb age for Siberian flood- basalt volcanism [J]. Geochimica et Cosmochimica Acta,1996,60(18):3505-3511. link1

[31] Lightfoot P C,Evans-Lamswood D. Structural controls on the primary distribution of mafic- ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces [J]. Ore Geology Reviews,2015,64:354- 386. link1

[32] 汤中立,李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地 质对比[M]. 北京:地质出版社,1995.

[33] Nicholson S W,Cannon W F,Schulz K J. Metallogeny of the Midcontinent rift system of North America [J]. Precambrian Research,1992,58(1-4):355-386. link1

[34] Li C,Naldrett A J. Melting ions of gneissic inclusions with enclosing magma at Voisey’s Bay,Labrador,Canada [J]. Economic Geology,2000,95(4):801-814. link1

[35] Zhang Mingjie,Kamo S L,Li C,et al. Precise U- Pb zirconbaddeleyite age of the Jinchuan sulfide ore- bearing ultramafic intrusion,western China [J]. Mineralium Deposita,2010,45 (1):3-9. link1

[36] Li C,Ripley E M. The Giant Jinchuan Ni-Cu- (PGE) deposit: Tectonic setting,magma evolution,ore genesis and exploration implications [M]// Li C,Ripley E M,eds. Magmatic Ni- Cu and PGE Deposits:Geology,Geochemistry and Genesis:Reviews in Economic Geology (Volume 17). Denver,Colorado: Society of Economic Geologists,Inc,2011:163-180.

[37] Li C,Barnes S J,Makovicky E,et al. Partitioning of nickel, copper,iridium,rhenium,platinum,and palladium between monosulfide solid solution and sulfide liquid [J]. Geochimica et Cosmochimica Acta,1996,60(7):1231-1238. link1

[38] Campbell I H,Naldrett A J. The influence of silicate:Sulfide ratio on the geochemistry of the magmatic sulfides [J]. Economic Geology,1979,74(6):1503-1506. link1

[39] Campbell I H,Naldrett A J,Barnes S J. A model for the origin of the platinum- rich sulfide horizons in the Bushveld and Stillwater complexes [J]. Journal of Petrology,1983,24(2):133- 165. link1

[40] David H E,Lorand J P. Mantle sulfide geobarometry [J]. Geochimica et Cosmochimica Acta,1993,57(10):2213-2222. link1

[41] Mavrogenes J A,O’Neill H S. The relative effect s of pressure,temperature and oxygen fugacity on the solubility of sulfide in mafic magmas [J]. Geochimica et Cosmochimica Acta, 1999,63(7/8):1173-1180. link1

[42] Haughton D R,Roeder P L,Skinner B J. Solubility of sulfur in mafic magmas [J]. Economic Geology,1974,69(4):451-467. link1

[43] Ballhaus C,Tredoux M,Spaeth A. Phase relations in the Fe-NiCu- PGE- S system at magmatic temperature and application to massive sulfide ores of the Sudbury Igneous Complex [J]. Journal of Petrology,2001,42(10):1911-1926. link1

[44] Moretti R,Papale P,Ottonello G. A model for the saturation of C-O-H-S fluids in silicate melts [J]. Geological Society,London,Special Publications,2003,213:81-101. link1

[45] Buchanan D L,Nolan J. Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld- Complex [J]. The Canadian Mineralogist,1979,17(2): 483-494. link1

[46] Vogt J H L. Beitrage zur genetischen classification der durch magmatische differentiations processe und der durch pneumatolyse entstandenen erzvorkomme [J]. Zeitschrift Prakt Geol, 1894,2:391-399.

[47] Wendlandt R F. Sulfide saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist, 1982,67(9210):877-885. link1

[48] Li C,Ripley E M. Empirical equations to predict the sulfur content of mafic magma at sulfide saturation and applications to magmatic sulfide deposits [J]. Mineralium Deposita,2005,40 (2):218-230. link1

[49] Keays R R,Lightfoot P C. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits:Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts [J]. Mineralium Deposita,2010,45(3):241-257. link1

[50] Maier W D,Barnes S J,De Waal S A. Exploration for magmatic Cu-Ni-PGE sulphide deposits;a review of recent advances in the use of geochemical tools,and their application to some South African ores [J]. South African Journal of Geology, 1998,101(3):237-253. link1

[51] Ripley E M,Li C,Shin D. Paragneiss assimilation in the genesis of magmatic Ni- Cu- Co sulfide mineralization at Voisey’s Bay,Labrador:δ34S,δ13C,and Se/S Evidence [J]. Economic Geology,2002,97(6):1307-1318. link1

[52] Ripley E M,Lightfoot P C,Li C,et al. Sulfur isotopic studies of continental flood basalts in the Noril’sk region:Implications for the association between lavas and ore-bearing intrusions [J]. Geochimica et Cosmochimica Acta,2003,67(15):2805-2817. link1

[53] Maier W D,Arndt N T,Curl E A. Progressive crustal contamination of the Bushveld Complex [J]. Contributions to Mineralogy and Petrology,2000,140(3):316-327. link1

[54] Lambert D D,Frick L R,Foster J G,et al. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic sulfide system,Labrador,Canada:II. Implications for parental magma chemistry,ore genesis,and metal redistribution [J]. Economic Geology,2000,95(4):867-888. link1

[55] Li X H,Su L,Chung S L,et al. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni- Cu sulfide deposit:Associated with the ~825 Ma south China mantle plume? [J]. Geochemistry,Geophysics,Geosystems,2005,6 (11):16-32. link1

[56] Philips G N,Evans K A. Role of CO2 in the formation of gold deposits [J]. Nature,2004,429(6994):860-863. link1

[57] Hanley J J,Mungall J E,Pettke T,et al. Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex,Ontario,Canada [J]. Mineralium Deposita,2005,40(3):237-256. link1

[58] Hedenquist J W,Aoki M,Shinohara H. Flux of volatiles and ore- forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano [J]. Geology,1994,22(7):585-588. link1

[59] Simmons S F,Brown K L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit [J]. Science,2006,314(5797):288-291. link1

[60] 张 生,熊小林,Seward T M. 成矿元素的气相迁移与实验研 究[J]. 地学前缘,2009,16(1):68-75. link1

[61] Olmez I,Finnegan D L,Zoller W H. Iridium emissions from Kilauea Volcano [J]. Journal of Geophysical Research:Solid Earth,1986,91(B1):653-663. link1

[62] Gemmell B J. Geochemistry of metallic trace elements in furmarolic condensates from Nicaragua and Costa Rican volcanos [J]. Journal of Volcanology and Geothermal Research,1987,33(1- 3):161-181. link1

[63] Rubin K H. Degassing of metals and metalloids from erupting seamount and mid- ocean ridge volcanoes [J]. Geochimica et Cosmochimica Acta,1997,61(17):3525-3542. link1

[64] Giggenbach W F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries [J]. Economic Geology,1992,87(7):1927-1944. link1

[65] Taran Y A,Bernard A,Gavilanes J C,et al. Native gold in mineral precipitates from high- temperature volcanic gases of Colima volcano,Mexico [J]. Applied Geochemistry,2000,15 (3):337-346. link1

[66] Quisefit J P,Toutain J P,Bergametti G,et al. Evolution versus cooling of gaseous volcanic emissions from Momtombo volcano,Nicaragua [J]. Geochimica et Cosmochimica Acta,1989, 53(10):2591-2608. link1

[67] Crowe B R,Finnegan D L,Zoller W H,et al. Trace element geochemistry of volcanic gases and particles from 1983—1984 eruptive episodes of Kilauea Volcano [J]. Journal of Geophysical Research:Solid Earth,1987,92(B13):13708-13714. link1

[68] Symonds R B,Rose W,Reed M H,et al. Volatilization,transport and sublimation of metallic and nonmetallic elements in high temperature gases at Merapi Volcano,Indonesia [J]. Geochimica et Cosmochimica Acta,1987,51(8):2083-2101. link1

[69] Williams- Jones A E,Heinrich C A. Vapor transport of metals and the formation of magmatic- hydrothermal ore deposits [J]. Economic Geology,2005,100(7):1287-1312. link1

[70] Heinrich C A,Driesner T,Stefansson A,et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits [J]. Geology,2004,32(9): 761-764. link1

[71] Ulrich T,Guenther D,Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits [J]. Nature,1999,399(6737):676-679. link1

[72] Jana D,Walker D. Core formation in the presence of various C—H—O volatile species [J]. Geochimica et Cosmochimica Acta,1999,63(15):2299-2310. link1

[73] Lowenstern J B,Mahood G A,Rivers M L. Evidence for extreme partitioning of copper into a magmatic vapor phase [J]. Science,1991,252(5011):1405-1409. link1

[74] Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems [J]. Mineralium Deposita,2001,36(6): 490-502. link1

[75] Yang Kaihui,Scott S D. Possible contribution of a metal- rich magmatic fluid to a sea- floor hydrothermal system [J]. Nature, 1996,383(6599):420-423. link1

[76] Ballhaus C,Sylvester P. Noble metal enrichment processes in the merensky reef,Bushveld complex [J]. Journal of Petrology,2000,41(4):545-561. link1

[77] Wirth R,Reid D,Schreiber A. Nanometer- sized platinumgroup minerals (PGM) in base metal sulfides:New evidence for an orthomagmatic origin of the Merensky Reef PGE ore deposit,Bushveld Complex,South Africa [J]. The Canadian Mineralogist,2013,51(1):143-155. link1

[78] Malitch K N,Auge T,Badanina I Yu,et al. Os- rich nuggets from Au- PGE placers of the Maimecha- Kotui Province,Russia:A multi- disciplinary study [J]. Mineralogy and Petrology, 2002,76(1/2):121-148. link1

[79] Burgisser A,Scaillet B,Harshvarhan H. Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent [J]. Journal of Geophysical Research:Solid Earth,2008,113(B12):204-217. link1

[80] Simon A C,Pettke T,Candela P A,et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage [J]. Geochimica et Cosmochimica Acta,2006,70(22):5583-5600. link1

[81] Fu Piaoer,Tang Qingyan,Zhang Mingjie,et al. The ore genesis of Kalatongke Cu-Ni Sulfide Deposit,west China [J]. Acta Geologica Sinica,2012,86(3):568-578. link1

[82] Tang Qingyan,Zhang Mingjie,Li C,et al. The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere [J]. Chemical Geology,2013,339:84-91. link1

[83] 傅飘儿. 新疆北部晚古生代岩浆铜镍硫化物矿床成因:岩石 及流体地球化学研究[D]. 兰州:兰州大学,2012. link1

[84] 汤庆艳. 峨眉山二叠纪地幔柱岩浆铜镍铂族硫化物矿床成矿 体系对比[D]. 兰州:兰州大学,2013. link1

[85] Zhang Mingjie,Tang Qingyan,Hu Peiqing,et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu- (PGE) sulfide ore-bearing ultramafic intrusion,Western China [J]. Chemical Geology,2013,339:301-312. link1

[86] Konnikov E G,Meurer W P,Neruchev S S,et al. Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic-ultramafic layered complex,eastern Siberia,Russia [J]. Mineralium Deposita,2000,35(6):526-532. link1

Related Research