期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《机械工程前沿(英文)》 >> 2019年 第14卷 第2期 doi: 10.1007/s11465-019-0534-1

Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

录用日期: 2019-02-18 发布日期: 2019-02-18

下一篇 上一篇

摘要

Maximizing the fundamental eigenfrequency is an efficient means for vibrating structures to avoid resonance and noises. In this study, we develop an isogeometric analysis (IGA)-based level set model for the formulation and solution of topology optimization in cases with maximum eigenfrequency. The proposed method is based on a combination of level set method and IGA technique, which uses the non-uniform rational B-spline (NURBS), description of geometry, to perform analysis. The same NURBS is used for geometry representation, but also for IGA-based dynamic analysis and parameterization of the level set surface, that is, the level set function. The method is applied to topology optimization problems of maximizing the fundamental eigenfrequency for a given amount of material. A modal track method, that monitors a single target eigenmode is employed to prevent the exchange of eigenmode order number in eigenfrequency optimization. The validity and efficiency of the proposed method are illustrated by benchmark examples.

相关研究