期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2017年 第11卷 第4期 doi: 10.1007/s11705-017-1623-5

Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing

. Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Caner, 13288 Marseille, France.. State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China

录用日期: 2017-03-31 发布日期: 2017-11-06

下一篇 上一篇

摘要

Small interfering RNA (siRNA) therapeutics hold great promise to treat a variety of diseases, as long as they can be delivered safely and effectively into cells. Dendrimers are appealing vectors for siRNA delivery by virtue of their well-defined molecular architecture and multivalent cooperativity. However, the clinical translation of RNA therapeutics mediated by dendrimer delivery is hampered by the lack of dendrimers that are of high quality to meet good manufacturing practice standard. In this context, we have developed small amphiphilic dendrimers that self-assemble into supramolecular structures, which mimic high-generation dendrimers synthesized with covalent construction, yet are easy to produce in large amount and superior quality. Indeed, the concept of supramolecular dendrimers has proved to be very promising, and has opened up a new avenue for dendrimer-mediated siRNA delivery. A series of self-assembling supramolecular dendrimers have consequently been established, some of them out-performing the currently available nonviral vectors in delivering siRNA to various cell types and , including human primary cells and stem cells. This short review presents a brief introduction to RNAi therapeutics, the obstacles to their delivery and the advantages of dendrimer delivery vectors as well as our bio-inspired structurally flexible dendrimers for siRNA delivery. We then highlight our efforts in creating self-assembling amphiphilic dendrimers to construct supramolecular dendrimer nanosystems for effective siRNA delivery as well as the related structural alterations to enhance delivery efficiency. The advent of self-assembling supramolecular dendrimer nanovectors holds great promise and heralds a new era of dendrimer-mediated delivery of RNA therapeutics in biomedical applications.

相关研究