期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2021年 第15卷 第5期 doi: 10.1007/s11705-020-2033-7

Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors

. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

录用日期: 2021-03-15 发布日期: 2021-03-15

下一篇 上一篇

摘要

In this present work, N-doped carbon nanobelts (N-CNBs) were prepared by a confined-pyrolysis approach and the N-CNBs were derived from a polypyrrole (Ppy) tube coated with a compact silica layer. The silica layer provided a confined space for the Ppy pyrolysis, thereby hindering the rapid overflow of pyrolysis gas, which is the activator for the formation of carbonaceous materials. At the same time, the confined environment can activate the carbon shell to create a thin wall and strip the carbon tube into belt morphology. This process of confined pyrolysis realizes self-activation during the pyrolysis of Ppy to obtain the carbon nanobelts without adding any additional activator, which reduces pollution and preparation cost. In addition, this approach is simple to operate and avoids the disadvantages of other methods that consume time and materials. The as-prepared N-CNB shows cross-linked nanobelt morphology and a rich porous structure with a large specific surface area. As supercapacitor electrode materials, the N-CNB can present abundant active sites, and exhibits a specific capacitance of 246 F·g , and excellent ability with 95.44% retention after 10000 cycles. This indicates that the N-CNB is an ideal candidate as a supercapacitor electrode material.

相关研究