期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2022年 第16卷 第2期 doi: 10.1007/s11705-021-2047-9

Novel eco-efficient reactive distillation process for dimethyl carbonate production by indirect alcoholysis of urea

. Department of Chemical and Biochemical Engineering, University “Politehnica” of Bucharest, 011061 Bucharest, Romania.. Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK

收稿日期: 2021-03-03 录用日期: 2021-04-28 发布日期: 2021-04-28

下一篇 上一篇

摘要

Dimethyl carbonate is an eco-friendly essential chemical that can be sustainably produced from CO , which is available from carbon capture activities or can even be captured from the air. The rapid increase in dimethyl carbonate demand is driven by the fast growth of polycarbonates, solvent, pharmaceutical, and lithium-ion battery industries. Dimethyl carbonate can be produced from CO through various chemical pathways, but the most convenient route reported is the indirect alcoholysis of urea. Previous research used techniques such as heat integration and reactive distillation to reduce the energy use and costs, but the use of an excess of methanol in the trans-esterification step led to an energy intensive extractive distillation required to break the dimethyl carbonate-methanol azeotrope. This work shows that the production of dimethyl carbonate by indirect alcoholysis of urea can be improved by using an excess of propylene carbonate (instead of an excess of methanol), a neat feat that we showed it requires only 2.64 kW·h·kg dimethyl carbonate in a reaction-separation-recycle process, and a reactive distillation column that effectively replaces two conventional distillation columns and the reactor for dimethyl carbonate synthesis. Therefore, less equipment is required, the methanol-dimethyl carbonate azeotrope does not need to be recycled, and the overall savings are higher. Moreover, we propose the use of a reactive distillation column in a heat integrated process to obtain high purity dimethyl carbonate (>99.8 wt-%). The energy requirement is reduced by heat integration to just 1.25 kW·h·kg dimethyl carbonate, which is about 52% lower than the reaction-separation-recycle process. To benefit from the energy savings, the dynamics and control of the process are provided for ±10% changes in the nominal rate of 32 ktpy dimethyl carbonate, and for uncertainties in reaction kinetics.

相关研究