期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2022年 第16卷 第7期 doi: 10.1007/s11705-021-2088-0

Development of a dual temperature control system for isoprene biosynthesis in

发布日期: 2021-10-15

下一篇 上一篇

摘要

Conflict between cell growth and product accumulation is frequently encountered in the biosynthesis of secondary metabolites. To address the growth-production conflict in yeast strains harboring the isoprene synthetic pathway in the mitochondria, the dynamic control of isoprene biosynthesis was explored. A dual temperature regulation system was developed through engineering and expression regulation of the transcriptional activator Gal4p. A cold-sensitive mutant, Gal4ep19, was created by directed evolution of Gal4p based on an internally developed growth-based high-throughput screening method and expressed under the heat-shock promoter PSSA4 to control the expression of PGAL-driven pathway genes in the mitochondria. Compared to the control strain with constitutively expressed wild-type Gal4p, the dual temperature regulation strategy led to 34.5% and 72% improvements in cell growth and isoprene production, respectively. This study reports the creation of the first cold-sensitive variants of Gal4p by directed evolution and provides a dual temperature control system for yeast engineering that may also be conducive to the biosynthesis of other high-value natural products.

相关研究