期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2022年 第16卷 第12期 doi: 10.1007/s11705-022-2197-4

Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO electrolysis

发布日期: 2022-10-14

下一篇 上一篇

摘要

Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.

相关研究