期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2023年 第17卷 第5期 doi: 10.1007/s11705-022-2232-5

Floret-like Fe–N nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction

收稿日期: 2022-06-06 录用日期: 2023-02-16 发布日期: 2023-02-16

下一篇 上一篇

摘要

Fe–Nx nanoparticles-embedded porous carbons with a desirable superstructure have attracted immense attention as promising catalysts for electrochemical oxygen reduction reaction. Herein, we employed Fe-coordinated covalent triazine polymer for the fabrication of Fe–Nx nanoparticle-embedded porous carbon nanoflorets (Fe/N@CNFs) employing a hypersaline-confinement-conversion strategy. Presence of tailored N types within the covalent triazine polymer interwork in high proportions contributes to the generation of Fe/N coordination and subsequent Fe–Nx nanoparticles. Owing to the utilization of NaCl crystals, the resultant Fe/N@CNF-800 which was generated by pyrolysis at 800 °C showed nanoflower structure and large specific surface area, which remarkably suppressed the agglomeration of high catalytic active sites. As expect, the Fe/N@CNF-800 exhibited unexpected oxygen reduction reaction catalytic performance with an ultrahigh half-wave potential (0.89 V vs. reversible hydrogen electrode), a dominant 4e transfer approach and great cycle stability (> 92% after 100000 s). As a demonstration, the Fe/N-PCNF-800-assembled zinc–air battery delivered a high open circuit voltage of 1.51 V, a maximum peak power density of 164 mW·cm–2, as well as eminent rate performance, surpassing those of commercial Pt/C. This contribution offers a valuable avenue to exploit efficient metal nanoparticles-based carbon catalysts towards energy-related electrocatalytic reactions and beyond.

相关研究