期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 >> 2015年 第9卷 第4期 doi: 10.1007/s11708-015-0368-4

Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen

Department of Mechanical Engineering, Annamalai University, Chidambaram 608002, India

录用日期: 2015-07-06 发布日期: 2015-11-04

下一篇 上一篇

摘要

Hydrogen (H ) is being considered as a primary automotive fuel and as a replacement for conventional fuels. Some of the desirable properties, like high flame velocity, high calorific value motivate us to use hydrogen fuel as a dual fuel mode in diesel engine. In this experiment, hydrogen was inducted in the inlet manifold with intake air. The experiments were conducted on a four stroke, single cylinder, water cooled, direct injection (DI), diesel engine at a speed of 1500 r/min. Hydrogen was stored in a high pressure cylinder and supplied to the inlet manifold through a water-and-air-based flame arrestor. A pressure regulator was used to reduce the cylinder pressure from 140 bar to 2 bar. The hydrogen was inducted with a volume flow rate of 4l pm, 6l pm and 8l pm, respectively by a digital volume flow meter. The engine performance, emission and combustion parameters were analyzed at various flow rates of hydrogen and compared with diesel fuel operation. The brake thermal efficiency (BTE) was increased and brake specific fuel consumption (BSFC) decreased for the hydrogen flow rate of 8l pm as compared to the diesel and lower volume flow rates of hydrogen. The hydrocarbon (HC) and carbon monoxide (CO) were decreased and the oxides of nitrogen (NO ) increased for higher volume flow rates of hydrogen compared to diesel and lower volume flow rates of hydrogen. The heat release rate and cylinder pressure was increased for higher volume flow rates of hydrogen compared to diesel and lower volume flow rates of hydrogen.

相关研究