期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 >> 2017年 第11卷 第3期 doi: 10.1007/s11708-017-0485-3

High purity Mn

. Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

录用日期: 2017-07-20 发布日期: 2017-09-07

下一篇 上一篇

摘要

Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn O nanoparticles through solid state thermal treatment of Mn O spinel nanoparticles, resulting in a chemical formula of [Mn ][Mn O ], evidenced by Rietveld refinement of synchrotron-based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn O electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn O electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

相关研究