期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 >> 2019年 第13卷 第4期 doi: 10.1007/s11708-019-0630-2

Effects of critical geometric parameters on the optical performance of a conical cavity receiver

. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China; PROMES-CNRS Laboratory, 7 rue du Four Solaire, 66120 Font-Romeu-Odeillo-via, France

录用日期: 2019-05-21 发布日期: 2019-05-21

下一篇 上一篇

摘要

The optical performance of a receiver has a great influence on the efficiency and stability of a solar thermal power system. Most of the literature focuses on the optical performance of receivers with different geometric shapes, but less research is conducted on the effects of critical geometric parameters. In this paper, the commercial software TracePro was used to investigate the effects of some factors on a conical cavity receiver, such as the conical angle, the number of loops of the helical tube, and the distance between the focal point of the collector and the aperture. These factors affect the optical efficiency, the maximum heat flux density, and the light distribution in the conical cavity. The optical performance of the conical receiver was studied and analyzed using the Monte Carlo ray tracing method. To make a reliable simulation, the helical tube was attached to the inner wall of the cavity in the proposed model. The results showed that the amount of light rays reaching the helical tube increases with the increasing of the conical angle, while the optical efficiency decreases and the maximum heat flux density increases. The increase in the number of loops contributed to an increase in the optical efficiency and a uniform light distribution. The conical cavity receiver had an optimal optical performance when the focal point of the collector was near the aperture.

相关研究