期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《能源前沿(英文)》 >> 2022年 第16卷 第2期 doi: 10.1007/s11708-021-0749-9

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal heat

发布日期: 2022-04-15

下一篇 上一篇

摘要

A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO2 turbine expansion electric power generation system was proposed in this paper. Assisted by this integrated model, thermo-economic and optimization analyses for the key design parameters of the whole system including the geothermal well pattern and operational conditions were performed to obtain a minimal levelized cost of electricity (LCOE). Specifically, in geothermal heat extraction simulation, an integrated wellbore-reservoir system model (T2Well/ECO2N) was used to generate a database for creating a fast, predictive, and compatible geothermal heat mining model by employing a response surface methodology. A parametric study was conducted to demonstrate the impact of turbine discharge pressure, injection and production well distance, CO2 injection flowrate, CO2 injection temperature, and monitored production well bottom pressure on LCOE, system thermal efficiency, and capital cost. It was found that for a 100 MWe power plant, a minimal LCOE of $0.177/kWh was achieved for a 20-year steady operation without considering CO2 sequestration credit. In addition, when CO2 sequestration credit is $1.00/t, an LCOE breakeven point compared to a conventional geothermal power plant is achieved and a breakpoint for generating electric power generation at no cost was achieved for a sequestration credit of $2.05/t.

相关研究