期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2020年 第14卷 第1期 doi: 10.1007/s11709-019-0591-x

SPT based determination of undrained shear strength: Regression models and machine learning

. Department of Civil Engigeering, Bogazici University, Istanbul 34342, Turkey.. School of Business, Quantitative Methods Division, Istanbul University, Istanbul 34320, Turkey

录用日期: 2019-12-25 发布日期: 2019-12-25

下一篇 上一篇

摘要

The purpose of this study is the accurate prediction of undrained shear strength using Standard Penetration Test results and soil consistency indices, such as water content and Atterberg limits. With this study, along with the conventional methods of simple and multiple linear regression models, three machine learning algorithms, random forest, gradient boosting and stacked models, are developed for prediction of undrained shear strength. These models are employed on a relatively large data set from different projects around Turkey covering 230 observations. As an improvement over the available studies in literature, this study utilizes correct statistical analyses techniques on a relatively large database, such as using a train/test split on the data set to avoid overfitting of the developed models. Furthermore, the validity and consistency of the prediction results are ensured with the correct use of statistical measures like -value and cross-validation which were missing in previous studies. To compare the performances of the models developed in this study with the prior ones existing in literature, all models were applied on the test data set and their performances are evaluated in terms of the resulting root mean squared error ( ) values and coefficient of determination ( ). Accordingly, the models developed in this study demonstrate superior prediction capabilities compared to all of the prior studies. Moreover, to facilitate the use of machine learning algorithms for prediction purposes, entire source code prepared for this study and the collected data set are provided as supplements of this study.

相关研究