期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2021年 第15卷 第4期 doi: 10.1007/s11709-021-0748-2

Experimental investigation on freeze−thaw durability of polymer concrete

1. Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA;2. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran;2. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran;3. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA

收稿日期: 2020-12-26 录用日期: 2021-09-07 发布日期: 2021-08-15

下一篇 上一篇

摘要

Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures. Freeze–thaw is one such test that indicates the ability of concrete to last a long time without a significant loss in its performance. In this study, the freeze–thaw resistance of polymer concrete containing different polymer contents was explored and compared to various conventional cement concretes. Concretes’ fresh and hardened properties were assessed for their workability, air content, and compressive strength. The mass loss, length change, dynamic modulus of elasticity, and residual compressive strength were determined for all types of concretes subjected to freeze–thaw cycles according to ASTM C666-procedure A. Results showed that polymer concrete (PC) specimens prepared with higher dosages of polymer contents possessed better freeze–thaw durability compared to other specimens. This high durability performance of PCs is mainly due to their impermeable microstructures, absence of water in their structure, and the high bond strength between aggregates and a polymer binder. It is also indicated that the performance of high-strength concrete containing air-entraining admixture is comparable with PC having optimum polymer content in terms of residual compressive strength, dynamic modulus of elasticity, mass loss, and length change.

相关研究