期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《结构与土木工程前沿(英文)》 >> 2023年 第17卷 第7期 doi: 10.1007/s11709-023-0981-y

Elevated temperature creep model of parallel wire strands

收稿日期: 2022-11-29 录用日期: 2023-09-04 发布日期: 2023-09-04

下一篇 上一篇

摘要

Parallel wire strands (PWSs), which are widely used in prestressed steel structures, are typically in high-stress states. Under fire conditions, significant creep effects occur, reducing the prestress and influencing the mechanical behavior of PWSs. As there is no existing approach to analyze their creep behavior, this study experimentally investigated the elevated temperature creep model of PWSs. A charge-coupled camera system was incorporated to accurately obtain the deformation of the specimen during the elevated temperature creep test. It was concluded that the temperature level had a more significant effect on the creep strain than the stress level, and 450 °C was the key segment point where the creep rate varied significantly. By comparing the elevated temperature creep test results for PWSs and steel strands, it was found that the creep strain of PWSs was lower than that of steel strands at the same temperature and stress levels. The parameters in the general empirical formula, the Bailey–Norton model, and the composite time-hardening model were fitted based on the experimental results. By evaluating the accuracy and form of the models, the composite time-hardening model, which can simultaneously consider temperature, stress, and time, is recommended for use in the fire-resistance design of pre-tensioned structures with PWSs.

相关研究