期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2012年 第6卷 第6期 doi: 10.1007/s11783-011-0383-6

A two-dimensional numerical model for eutrophication in Baiyangdian Lake

1. Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, China; 2. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China

发布日期: 2012-12-01

下一篇 上一篇

摘要

Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco-dynamics model including the effects of reed resistance on flow was coupled with the hydrodynamics governing equations. An improvement on the Water Quality Analysis Simulation Program (WASP, a modeling system introduced by the US Environmental Protection Agency) is established, which uses the zooplankton kinetic equation. The model simulates water quality constituents associated with eutrophication in the lake, including phytoplankton, zooplankton, nitrogen, phosphorus, dissolved oxygen, and others. Various kinetic coefficients were calibrated using measured data or information from relevant literature, to study eutrophication in the lake. The values calculated by the calibrated model agree well with field data, including ammonia nitrogen, total nitrogen, total phosphorus and dissolved oxygen. Changes related to nutrition and dissolved oxygen during the processes were simulated. The present model describes the temporal variation of water quality in Baiyangdian Lake with reasonable accuracy. Deviations between model-simulated and observed values are discussed. As an ideal tool for environmental management of the lake, this model can be used to predict its water quality, and be used in research to examine the eutrophication process.

相关研究