期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2014年 第8卷 第4期 doi: 10.1007/s11783-013-0588-y

Characterization of interaction between different adsorbents and copper by simulation experiments using sediment-extracted organic matter from Taihu Lake, China

1. Tianjin Academy of Environmental Sciences, Tianjin 300191, China.2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.3. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

发布日期: 2014-06-11

下一篇 上一篇

摘要

The complex capacity of different types of organic matters (OMs) for Cu was quantitatively studied by simulation experiments using different adsorbents prepared from the sediment in Taihu Lake. The free Cu was measured with ion selective electrode (ISE) and complex capacity was calculated using a conditional formation constant model. The result indicated that the complex capacity was 0.048 mmol·g , 0.009 and 0.005 mmol·g for raw sediment, sediment without DOM, sediment without insoluble organic matters but with DOM and sediment without OM. Insoluble organic matter played a major role in the sorption of Cu in sediment and it can adsorb most Cu from water column. In the solution, Cu mainly existed as a complex with DOM and the DOM-Cu complexation capacity was 327.87 mg·g . The change of TOC and pH indicated ion-exchange in the interaction between free Cu and DOM. When the Cu concentration in the experiment reached the complex capacity of DOM, precipitation was the major mechanism to remove Cu from water phase, which was observed from UV absorbance change of DOM, that is, its aromaticity increased while molecular weight decreased. The desorption result indicated that DOM was more capable of desorbing Cu from adsorbents without OM than adsorbent with OM. The desorbed quantity with DOM was 1.65, 1.78 and 2.25 times higher than that with water for adsorbents without OM, raw adsorbents (sediment) and adsorbents without DOM.

相关研究