期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0920-z

The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system

. Chinese Academy of Geological Sciences, Beijing 100037, China.. China University of Geosciences (Beijing), Beijing 100083, China.. School of Environment, Tsinghua University, Beijing 100084, China.. Beijing Guohuan Tsinghua Environment Engineering Design & Research Institute Co. Ltd., Beijing 100084, China

发布日期: 2017-04-07

下一篇 上一篇

摘要

Artificial composite soil treatment system with the high infiltration rate (1.394 m·d ) had a good removal efficiency of TMP (80%–90%) and SMX (60%–70%). The removal mechanism of TMP and SMX was mainly sorption and was related with hydrogeochemical process. Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K , Na , Ca , Mg hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d ) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K , Ca and Mg and had a lower effluent Na concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.

相关研究