期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《环境科学与工程前沿(英文)》 >> 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1152-1

Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption

Environmental Engineering Department, Yildiz Technical University, Esenler/Istanbul 34220, Turkey

发布日期: 2019-09-23

下一篇 上一篇

摘要

The wastewater from industrial area was treated by EC via Fe and Al electrodes. Cu, Ni, Cr and Zn were highly removed at the first minutes, simultaneously. Pseudo-2nd-order was found to be more suitable for kinetics. Adsorption capacities based on kinetic modeling were observed as Cr>Cu>Ni>Zn. The chemical cost in the case of pH adjustment after EC was less as 3.83 $/m3. It is known that wastewater produced by the metal-plating industry contains several heavy metals, which are acidic in nature and therefore toxic for the environment and for living creatures. In particular, heavy metals enter the food chain and accumulate in vital organs and cause serious illness. The precipitation of these metals is mostly achieved by pH adjustment, but as an alternative to this method, the electrocoagulation process has investigated in this study using iron and aluminum electrodes. The effects of the pH adjustment on removal before and after the electrocoagulation process were investigated, and cost analyses were also compared. It was observed that a high proportion of removal was obtained during the first minutes of the electrocoagulation process; thus, the current density did not have a great effect. In addition, the pH adjustment after the electrocoagulation process using iron electrodes, which are 10% more effective than aluminum electrodes, was found to be much more efficient than before the electrocoagulation process. In the process where kinetic modeling was applied, it was observed that the heavy metal removal mechanism was not solely due to the collapse of heavy metals at high pH values, and with this modeling, it was seen that this mechanism involved adsorption by iron and aluminum hydroxides formed during the electrocoagulation process. When comparing the ability of heavy metals to be adsorbed, the sequence was observed to be Cr>Cu>Ni>Zn, respectively.

相关研究