期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第1期 doi: 10.1016/J.ENG.2016.01.019

压水堆熔融物堆内滞留策略:历史回顾与研究展望

a. China Nuclear Power Engineering Co. Ltd., Beijing 100840, China
b. Royal Institute of Technology (KTH), Roslagstullsbacken 21, 10691 Stockholm, Sweden

收稿日期: 2015-11-09 修回日期: 2016-02-14 录用日期: 2016-03-01 发布日期: 2016-03-31

下一篇 上一篇

摘要

本文对广泛应用于第三代压水堆的严重事故缓解措施——熔融物堆内滞留(IVR)进行了历史回顾。IVR策略最早源自于第二代反应堆Lovissa VVER-440的改进设计,以应对堆芯熔化事故。随后,IVR策略被应用于许多新设计的反应堆,如西屋的AP1000、韩国的APR1400以及中国的先进压水堆CAP1400和华龙一号。对IVR策略有效性影响最大的因素分别为堆内堆芯熔化进程、熔融物加载于压力容器壁面的热流密度和压力容器外部冷却。对于堆芯熔化进程,过去人们一直仅关注压力容器下腔室内熔池的换热行为。但通过回顾与分析,本文认为堆内的其他现象,如堆芯的降级和迁移、碎片床的形成及其可冷却性以及熔池的动态形成过程等,可能也会对熔池的最终状态及其作用于下封头的热负荷产生影响。通过对相关研究的回顾,本文希望找出IVR策略的研究中有待完善的部分,并据目前发展水平提出未来IVR研究的需求。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Sehgal BR. Nuclear safety in light water reactors: severe accident phenomenology. Waltham: Academic Press; 2012.

[ 2 ] Sehgal BR. Stabilization and termination of severe accidents in LWRs. Nucl Eng Des 2006; 236(19−21): 1941−52. 链接1

[ 3 ] Fischer M, Herbst O, Schmidt H. Demonstration of the heat removing capabilities of the EPR core catcher. Nucl Eng Des 2005; 235(10−12): 1189−200. 链接1

[ 4 ] Bezlepkin VV, Kukhtevich IV, Leont’ev YG, Svetlov SV. The concept of overcoming severe accidents at nuclear power stations with VVER reactors. Therm Eng 2004; 51(2): 115−23.

[ 5 ] Kymäläinen O, Tuomisto H, Theofanous TG. In-vessel retention of corium at the Loviisa plant. Nucl Eng Des 1997; 169(1−3): 109−30. 链接1

[ 6 ] Theofanous TG, Najafi B, Rumble E. An assessment of steam-explosion-induced containment failure. Parts I: probabilistic aspects. Nucl Sci Eng 1987, 97(4): 259−81.

[ 7 ] Theofanous TG, Liu C, Additon S, Angelini S, Kymäläinen O, Salmassi T. In-vessel ccolability and retention of a core melt. Nucl Eng Des 1997; 169(1−3): 1−48. 链接1

[ 8 ] Dinh TN, Tu JP, Salmassi T, Theofanous TG. Limits of coolability in the AP1000-related ULPU-2400 Configuration V facility. In: Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics; 2003Oct5−9; Seoul, Korea; 2003.

[ 9 ] Esmaili H, Khatib-Rahbar M. Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000. Rockville: Energy Research, Inc.; 2004Aug. Report No.:NUREG/CR-6849.

[10] Asmolov V, Tsurikov D. Major activities and results. In: Material Scaling Seminar; 2004Jun10−11; Aix-en-Provence, France; 2004.

[11] Tsurikov D. MASCA2 Project: major activities and results. In: Material Scaling Seminar; 2007Oct11−12; Cadarache, France; 2007.

[12] Oh SJ, Kim HT. Effectiveness of external reactor vessel cooling (ERVC) strategy for APR1400 and issues of phenomenological uncertainties. In: Workshop Proceedings: Evaluation of Uncertainties in Relation to Severe Accidents and Level-2 Probabilistic Safety Analysis; 2005Nov7−9; Aix-en-Provence, France; 2005.

[13] Rempe JL, Suh KY, Cheung FB, Kim SB. In-vessel retention strategy for high power reactors. Idaho Falls: Idaho National Engineering and Environmental Laboratory; 2005Jan. Report No.: INEEL/EXT-04-02561.

[14] Rougé S. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure. Nucl Eng Des 1997; 169(1−3): 185−95. 链接1

[15] Theofanous TG, Dinh TN. Integration of multiphase science and technology with risk management in nuclear power reactors. Multiphas Sci Technol 2008; 20(2): 81−211. 链接1

[16] Cheng X, Yang YH, Ouyang Y, Miao HX. Role of passive safety systems in Chinese nuclear power development. Sci Technol Nucl Ins 2009; 2009: 573026.

[17] Tang CL, Kuang B, Liu PF, Zhu C, Wang F. Preliminary analysis of channel flow characteristics in the passive IVR-ERVC experimental facility. Nucl Tech 2014; 37(12): 120604. Chinese.

[18] Li YB, Tong LL, Cao XW, Guo DQ. In-vessel retention coolability evaluation for Chinese improved 1000 MWe PWR. Ann Nucl Energy 2015; 76: 343−9. 链接1

[19] Magallon D, Huhtiniemi I, Hohmann H. Lessons learnt from FARO/TERMOS corium melt quenching experiments. Nucl Eng Des 1999; 189(1−3): 223−38. 链接1

[20] Magallon D, Huhtiniemi I. Corium melt quenching tests at low pressure and subcooled water in FARO. Nucl Eng Des 2001; 204(1−3): 369−76. 链接1

[21] Karbojian A, Ma WM, Kudinov P, Dinh TN. A scoping study of debris bed formation in the DEFOR test facility. Nucl Eng Des 2009; 239(9): 1653−9. 链接1

[22] Ma WM, Dinh TN. The effects of debris bed’s prototypical characteristics on corium coolability in a LWR severe accident. Nucl Eng Des 2010; 240(3): 598−608. 链接1

[23] Kymäläinen O, Tuomisto H, Hongisto O, Theofanous TG. Heat flux distribution from a volumetrically heated pool with high Rayleigh number. Nucl Eng Des 1994; 149(1−3): 401−8. 链接1

[24] Theofanous TG, Maguire M, Angelini S, Salmassi T. The first results from the ACOPO experiment. Nucl Eng Des 1997; 169(1−3): 49−57. 链接1

[25] Sehgal BR, Bui VA, Dinh TN, Green JA, Kolb G. SIMECO experiments on in-vessel melt pool formation and heat transfer with and without a metallic layer. In: Proceedings of the Workshop on In-Vessel Core Debris Retention and Coolability; 1998 Mar 3−6; Garching, Germany; 1998. p. 198−206.

[26] Gaus-Liu X, Miassoedov A, Cron T, Wenz T. In-vessel melt pool coolibility test−description and results of LIVE experiments. Nucl Eng Des 2010; 240(11): 3898−903. 链接1

[27] Asmolov V, Tsurikov D. RASPLAV project: major activities and results. In: Proceedings of OECD/NEA RASPLAV Seminar; 2000Nov14−15; Munich, Germany; 2000.

[28] Bonnet JM. Thermal hydraulic phenomena in corium pools for ex-vessel situations: the BALI experiment. In: Proceedings of the 8th International Conference on Nuclear Engineering; 2000Apr2−6; Baltimore, Maryland. New York: American Society of Mechanical Engineers; 2000. p. 79−86.

[29] Zhang LT, Zhang YP, Zhao B, Ma WM, Zhou YK, Su GH, COPRA: a large scale experiment on natural convection heat transfer in corium pools with internal heating. Prog Nucl Energ 2016; 86: 132−40. 链接1

相关研究