期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2016年 第2卷 第4期 doi: 10.1016/J.ENG.2016.04.005

烃污染土壤的热处理工艺:针对可持续修复工艺进展的综述

a Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
b Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
c Department of Earth Science, Rice University, Houston, TX 77005, USA
d Chevron Energy Technology Company, Houston, TX 77002, USA

录用日期: 2016-12-13 发布日期: 2016-12-28

下一篇 上一篇

摘要

在受烃污染的土壤和底泥的修复处理工艺中,热处理工艺因其能快速且稳定地达到修复标准而占有重要地位。然而,持续高温属于能源密集型操作,且可破坏土壤性质,因此尽管此工艺被广泛应用,关于这些工艺的环境兼容性和可持续性却极少被报道。鉴于此,我们对几个针对烃污染土壤的常用热处理工艺进行了概述,对它们的潜在环境影响进行了评估;并基于能源需求、水需求、系统生态和土壤科学的全面考虑,提出了可持续且影响较小的发展框架。至今还没有一种通用适合的热处理工艺。工艺的恰当选择要根据污染状况( 包括环境中存在的烃种类) 和场地特征( 如被污染土壤的性质、水含量和热敏性) 而定。总之,处理工程与土壤科学、生态系统和植物生物学研究的有机结合是攻克技术瓶颈、提高去除率和促进热处理工艺可持续性发展的关键所在。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Schmidt-Etkin D. Spill occurrences: a world overview. In: Fingas M, editor Oil spill science and technology.Burlington: Gulf Professional Publishing; 2011. p. 7–48 链接1

[ 2 ] Organization of the Petroleum Exporting Countries. OPEC Basket Price. 1998–2007.

[ 3 ] Alvarez PJJ, Illman WA. Bioremediation and natural attenuation: process fundamentals and mathematical models.Hoboken: John Wiley & Sons, Inc.; 2005 链接1

[ 4 ] Block R, Stroo H, Swett GH. Bioremediation: why doesn’t it work sometimes? Chem Eng Prog 1993;89(8):44–50.

[ 5 ] Scholes GC, Gerhard JI, Grant GP, Major DW, Vidumsky JE, Switzer C, . Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR. Environ Sci Technol 2015;49(24):14334–42 链接1

[ 6 ] Molnaa BA, Grubbs RB. Bioremediation of petroleum contaminated soils using a microbial consortia as inoculum. In: Calabrese EJ, Kostecki PT, editors Petroleum contaminated soils. Chelsea: Lewis Publishers; 1989. p. 219–232.

[ 7 ] Stegemeier GL, Vinegar HJ. Thermal conduction heating for in-situthermal desorption of soils. In: Oh CH, editor Hazardous and radioactive waste treatment technologies handbook. Boca Raton: CRC Press; 2001. p. 4.6-1–4.6-37.

[ 8 ] Vidonish JE, Zygourakis K, Masiello CA, Gao X, Mathieu J, Alvarez PJ. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environ Sci Technol 2016;50(5):2498–506 链接1

[ 9 ] Cioni B, Petarca L. Petroleum products removal from contaminated soils using microwave heating. Chem Eng Trans 2011;24:1033–8.

[10] Hinchee RE, Smith LA. In situthermal technologies for site remediation.Boca Raton: CRC Press; 1992.

[11] Pellerin C. Alternatives to incineration: there’s more than one way to remediate. Environ Health Perspect 1994;102(10):840–5 链接1

[12] Shearer TL. A comparison of in situ vitrification and rotary kiln incineration for soils treatment. J Air Waste Manage Assoc 1991;41(9):1259–64 链接1

[13] Valenti M. Cleaning soil without incineration. Mech Eng 1994;116(5):50–5.

[14] Bucalá V, Saito H, Howard JB, Peters WA. Products compositions and release rates from intense thermal treatment of soil. Ind Eng Chem Res 1996;35(8):2725–34 链接1

[15] Saiz-Jimenez C, De Leeuw JW. Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrol 1986;9(2):99–119 链接1

[16] Khan FI, Husain T, Hejazi R. An overview and analysis of site remediation technologies. J Environ Manage 2004;71(2):95–122 链接1

[17] Riser-Roberts E. Remediation of petroleum contaminated soils: biological, physical, and chemical processes.Boca Raton: CRC Press; 1998 链接1

[18] Baker RS, Kuhlman M. A description of the mechanisms of in-situ thermal destruction (ISTD) reactions. In: Al-Ekabi H, editor Current Practices in Oxidation and Reduction Technologies for Soil and Groundwater: Proceedings of the 2nd International Conference on Oxidation and Reduction Technologies for Soil and Groundwater; 2002 Nov 17–21; Toronto, Canada; 2002.

[19] Troxler WL, Cudahy JJ, Zink RP, Yezzi JJ Jr, Rosenthal SI. Treatment of nonhazardous petroleum-contaminated soils by thermal desorption technologies. J Air Waste Manage 1993;43(11):1512–25 链接1

[20] Yeung AT. Remediation technologies for contaminated sites. In: Chen Y, Zhan L, Tang X, editors Advances in environmental geotechnics. Hangzhou: Zhejiang University Press; 2010. p. 328–69 链接1

[21] Exner JH. Alternatives to incineration in remediation of soil and sediments assessed. Rem J 1995;5(3):1–18 链接1

[22] Barnes DL, Laderach SR, Showers C. Treatment of petroleum-contaminated soil in cold, wet, remote regions.Missoula: USDA Forest Service; 2002.

[23] Vermeulen F, McGee B. In-situ electromagnetic heating for hydrocarbon recovery and environmental remediation. J Can Pet Technol 2000;39(8):24–8 链接1

[24] TerraTherm: FAQ [Internet]. Gardner: TerraTherm, Inc.; c2015 [cited 2016 Feb 1]. Available from: http://www.terratherm.com/resources/faq.htm.

[25] Beyke G, Fleming D. In situthermal remediation of DNAPL and LNAPL using electrical resistance heating. Rem J 2005;15(3):5–22 链接1

[26] Li L. Remediation treatment technologies: reference guide for developing countries facing persistent organic pollutants.Vancouver: University of British Columbia; 2007.

[27] Committee on Innovative Remediation Technologies. Comparing costs of remediation technologies: limitations of existing cost reporting structures. In: Committee on Innovative Remediation Technologies. Innovations in ground water and soil cleanup: from concept to commercialization. Washington, DC: National Academy Press; 1997. p. 252–3.

[28] Lief RN, Aines RD, Knauss KG. Hydrous pyrolysis of pole treating chemicals. Lawrence livermore laboratory report.Livermore (US):?Lawrence?Livermore?National?Laboratory;1997 Nov. Report No,: UCRL-CR-129838.

[29] Smith MT. Treatment of contaminated soils by batch thermal desorption [dissertation].Calgary: University of Calgary; 1997.

[30] Hansen KS, Conley DM, Vinegar HJ, Coles JM, Menotti JL, Stegemeier GL. In situ thermal desorption of coal tar. In: Proceedings of the IGT/GRI International Symposium on Environmental Biotechnologies and Site Remediation Technologies; 1998 Dec 7–9; Orlando, United States. Washington, DC: US Environmental Protection Agency; 1998. p. 1–22.

[31] Marsh KN, editor. Recommended reference materials for the realization of physicochemical properties. Oxford: Blackwell; 1987.

[32] Mabery CF, Goldstein AH. On the specific heats and heat of vaporization of the paraffine and methylene hydrocarbons. P Am Acad Arts Sci 1902;37(20):539–49 链接1

[33] Gilot P, Howard JB, Peters WA. Evaporation phenomena during thermal decontamination of soils. Environ Sci Technol 1997;31(2):461–6 链接1

[34] Rein G. Smouldering combustion phenomena in science and technology. Int Rev Chem Eng 2009;1:3–18.

[35] Hasan T, Gerhard JI, Hadden R, Rein G. Self-sustaining smouldering combustion of coal tar for the remediation of contaminated sand: two-dimensional experiments and computational simulations. Fuel 2015;150:288–97 链接1

[36] Pironi P, Switzer C, Gerhard JI, Rein G, Torero JL. Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters. Environ Sci Technol 2011;45(7):2980–6 链接1

[37] Switzer C, Pironi P, Gerhard JI, Rein G, Torero JL. Volumetric scale-up of smouldering remediation of contaminated materials. J Hazard Mater 2014;268:51–60 链接1

[38] Switzer C, Pironi P,?Gerhard JI,?Rein G,?Torero JL. Self-sustaining smoldering combustion: a novel remediation process for non-aqueous-phase liquids in porous media. Environ Sci Technol 2009;43(15):5871–7 链接1

[39] Pape A, Switzer C, McCosh N, Knapp CW. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma 2015;243−244:1–9.

[40] Griffin T. Discussion of remediation strategies and anticipated budgetary cost estimates former Clyde Morris Landfill Site. 2013, Cardno TBE.

[41] Fingas M. An overview of in-situburning. In: Fingas M, editor. Oil spill science and technology.Burlington: Gulf Professional Publishing; 2010. p. 737–903.

[42] Shearer TL. A comparison of In situvitrification and rotary kiln incineration for soils treatment. J Air Waste Manage Assoc 1991;41(9):1259–64 链接1

[43] Nyer EK. In situtreatment technology, second edition. Boca Raton, FL: CRC Press; 2000 链接1

[44] Morselli L, De Robertis C, Luzi J, Passarini F, Vassura I. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective. J Hazard Mater 2008;159(2-3):505–11 链接1

[45] Federal Remediation Technologies Roundtable.In situphysical/chemical treatment for soil, sediment, bedrock and sludge. In: Remediation technologies screening matrix and reference guide, version 4.0. Washington, DC: Federal Remediation Technologies Roundtable; 2005.

[46] Nyer EK. Kidd DF, Palmer PL, Crossman TL, Fam S, Johns II FJ, Boettcher G, Suthersan SS. In situtreatment technology. Boca Raton, FL: Lewis Publishers; 1996.

[47] Speight JG. The desulfurization process. In: Speight JG. The desulfurization of heavy oils and residua. New York: Marcel Dekker, Inc.;2000.

[48] Speight JG. Thermal chemistry of petroleum constituents. In: Speight JG, editor. Petroleum chemistry and refining. Washington, DC: Taylor & Francis; 1998.

[49] Dolbear GE. Hydrocracking: reactions, catalysts, and processes. In: Speight JG, editor. Petroleum chemistry and refining. Washington,DC: Taylor & Francis; 1998.

[50] Banerjee DK, Laidler KJ, Nandi BN, Patmore DJ. Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes. Fuel 1986;65(4):480–4 链接1

[51] Guisnet M, Magnoux P. Organic chemistry of coke formation. Appl Catal A: Gen 2001;212(1−2):83–96 链接1

[52] Sullivan RF, Boduszynski MM, Fetzer JC. Molecular transformations in hydrotreating and hydrocracking. Energ Fuel 1989;3(5):603–12 链接1

[53] Saito HH, Bucalá V, Howard JB, Peters WA. Thermal removal of pyrene contamination from soil: basic studies and environmental health implications. Environ Health Perspect 1998;106(Suppl 4):1097–107 链接1

[54] Hamby DM. Site remediation techniques supporting environmental restoration activities—a review. Sci Total Environ 1996;191(3):203–24 链接1

[55] McCullough ML. Dagdigian JV. Evaluation of remedial options for treatment of heavy metal and petroleum hydrocarbon contaminated soil. Rem J 1993;3(3):265–86 链接1

[56] Gavrilescu M. Overview of In situ remediation technologies for sites and groundwater. Environ Eng Manag J 2006;5(1):79–114.

[57] Downey DC, Elliott MG. Performance of selected In situ soil decontamination technologies: an air force perspective. Environ Prog 1990;9(3):169–73 链接1

[58] Price SL, Kasevich RS, Johnson MA, Wiberg D, Marley MC. Radio frequency heating for soil remediation. J Air Waste Manage 1999;49(2):136–45 链接1

[59] Wu TN. Environmental perspectives of microwave applications as remedial alternatives: review. Pract Period Hazard Toxic Radioact Waste Manage 2008;12(2):102–15 链接1

[60] Li D, Zhang Y, Quan X, Zhao Y. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J Environ Sci (China) 2009;21(9):1290–5 链接1

[61] Dettmer K. A discussion of the effects of thermal remediation treatments on microbial degradation processes. Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office; 2002.

[62] Bientinesi M. Scali C, Petarca L. Radio frequency heating for oil recovery and soil remediation. In: Proceedings of 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2015; 2015 Jun 7–10; Whistler, Canada. IFAC-PapersOnLine; 2015. p. 1198–203 链接1

[63] Kawala Z, Atamańczuk T. Microwave-enhanced thermal decontamination of soil. Environ Sci Technol 1998;32(17):2602–7 链接1

[64] Fann S, Pal D, Lory E, Karr L, Mathews AP, Price PA. Hot air vapor extraction for remediation of petroleum contaminated sites. In: Chung JS, Matsui T, Naito S, Sayed M, editors Proceedings of the Eigth International Offshore and Polar Engineering Conference; 1998 May 24–29; Montreal, Canada. ?Cupertino: ISOPE; 1998. p. 313–21.

[65] Mohamed AM, EI-menshawy N, Saif AM. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement. J Environ Manage 2007;83(3):339–50 链接1

[66] Davis EL. Ground water issue: steam injection for soil and aquifer remediation. Washington, DC: US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response; 1998. Report No.: EPA/540/8–97/505.

[67] Nunno T, Hyman J, Spawn P, Healy J, Spears C, Brown M, Jonker C. In situ steam stripping of soils. In: Assessment of international technologies for superfund applications—technology identification and selection. US government technology transfer report. Washington, DC: US Environmental Protection Agency; 1989. Report No.: EPA/600/2-89- 017.

[68] Udell KS, Stewart LD. Field study of In situ steam injection and vacuum extraction for recovery of volatile organic solvents. UCB-SEEHRL report. Berkeley (CA): Department?of?Mechanical Engineering, University of California; 1989. Report No.: 89–2.

[69] Imhoff PT, Frizzell A, Miller CT. Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous media. Environ Sci Technol 1997;31(6):1615–22 链接1

[70] Plehiers PM, Reyniers GC, Froment GF. Simulation of the run length of an ethane cracking furnace. Ind Eng Chem Res 1990;29(4):636–41 链接1

[71] Sundaresan S. Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AlChE J 2000;46(6):1102–5 链接1

[72] Quann RJ, Jaffe SB. Building useful models of complex reaction systems in petroleum refining. Chem Eng Sci 1996;51(10):1615–35 链接1

[73] Lighty JS, Silcox GD, Pershing DW, Cundy VA, Linz DG. Fundamentals for the thermal remediation of contaminated soils. Particle and bed desorption models. Environ Sci Technol 1990;24(5):750–7 链接1

[74] Keyes BR, Silcox GD. Fundamental study of the thermal desorption of toluene from montmorillonite clay particles. Environ Sci Technol 1994;28(5):840–9 链接1

[75] Kawana Y. Reactivity of coke. III. Effects of some metallic additions on the surface area of cokes from humic acid and on the absolute reaction rates of the coke-carbon dioxide system. Bull Chem Soc Jpn 1954;27(9):574–8 链接1

[76] Merino J. Piña J, Erraz AF, Bucalá V. Fundamental study of thermal treatment of soil. J Soil Contam 2003;12(3):417–41.

[77] Schulten HR. Analytical pyrolysis of humic substances and soils: geochemical, agricultural and ecological consequences. J Anal Appl Pyrol 1993;25:97–122 链接1

[78] Schulten HR, Abbt-Braun G, Frimmel FH. Time-resolved pyrolysis field ionization mass spectrometry of humic material isolated from freshwater. Environ Sci Technol 1987;21(4):349–57 链接1

[79] Certini G. Effects of fire on properties of forest soils: a review. Oecologia 2005;143(1):1–10 链接1

[80] González-Pérez JA, Gonzál ez-Vila FJ, Almendros G, Knicker H. The effect of fire on soil organic matter—a review. Environ Int 2004;30(6):855–70 链接1

[81] Halikia I, Zoumpoulakis L, Christodoulou E, Prattis D. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. EJMP & EP 2001;1(2):89–102.

[82] Schulten HR. Analytical pyrolysis of humic substances and soils: geochemical, agricultural, and ecological consequences. J Anal Appl Pyrol 1993;25:97–122 链接1

[83] Bucala V, Saito H, Howard JB, Peters WA. Thermal treatment of fuel oil-contaminated soils under rapid heating conditions. Environ Sci Technol 1994;28(11):1801–7 链接1

[84] Aydinalp C, Marinova S. Distribution and forms of heavy metals in some agricultural soils. Pol J Environ Stud 2003;12(5):629–33.

[85] Sposito G. The chemistry of soils.Oxford: Oxford University Press; 1989.

[86] Troeh FR. Thompson LM. Calcium, magnesium, and sulfur. In: Soils and soil fertility. Oxford: 5th ed. Oxford University Press; 1993.

[87] Ulery AL, Graham RC, Amrhein C. Wood-ash composition and soil pH following intense burning. Soil Sci 1993;156(5):358–64 链接1

[88] Scullion J. Remediating polluted soils. Naturwissenschaften 2006;93(2): 51–65 链接1

[89] Cosentino D, Chenu C, Bissonnais LY. Aggregate stability and microbial community dynamics under drying—wetting cycles in a silt loam soil. Soil Biol Biochem 2006;38(8):2053–62 链接1

[90] Abiven S, Menasseri S, Chenu C. The effects of organic inputs over time on soil aggregate stability—a literature analysis. Soil Biol Biochem 2009; 41(1):1–12 链接1

[91] Spohn M, Giani L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem 2011;43(5):1081–8 链接1

[92] Troeh FR. Thompson LM. Physical properties of soils. In: Soils and soil fertility. 5th ed.Oxford: Oxford University Press; 1993.

[93] Norris G, Al-Dhahir Z, Birnstingl J, Plant SJ, Cui S, Mayell P. A case study of the management and remediation of soil contaminated with polychlorinated biphenyls. Eng Geol 1999;53(2):177–85 链接1

[94] Bonnard M, Devin S, Leyval C, Morel JL, Vasseur P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotox Environ Safe 2010;73(5):955–60 链接1

[95] Dazy M, Férard JF, Masfaraud JF. Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment. Ecol Eng 2009;35(10):1493–500 链接1

[96] Overton EB, Miles MS. Reevaluation of an in-situ burn and phytoremediation studies for onshore spills. Baton Rouge (LA): Oil Spill Research and Development Program, Louisiana State University; 1999.

[97] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 2004;79(1):7–31 链接1

[98] Jastrow JD, Miller RM, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 1998;30(7):905–16 链接1

[99] Bronick CJ, Lal R. Soil structure and management: a review. Geoderma 2005;124(1−2):3–22 链接1

[100] Monger HC, Daugherty LRA, Lindemann WC, Liddell CM. Microbial precipitation of pedogenic calcite. Geology 1991;19(10):997–1000 链接1

[101] Youdeowei PO. The effect of crude oil pollution and subsequent fire on the engineering properties of soils in the Niger Delta. B Eng Geol Environ 2008;67(1):119–21 链接1

[102] Huang H, Buekens A. On the mechanisms of dioxin formation in combustion processes. Chemosphere 1995;31(9):4099–117 链接1

[103] Altwicker ER. Relative rates of formation of polychlorinated dioxins and furans from precursor and de novo reactions. Chemosphere 1996;33(10):1897–904 链接1

[104] Huang H, Buekens A. Chemical kinetic modelling of PCDD formation from chlorophenol catalysed by incinerator fly ash. Chemosphere 2000;41(6):943–51 链接1

[105] Huang H, Buekens A. Chemical kinetic modeling of de novo synthesis of PCDD/F in municipal waste incinerators. Chemosphere 2001;44(6):1505–10 链接1

[106] Babushok VI, Tsang W. Gas-phase mechanism for dioxin formation. Chemosphere 2003;51(10):1023–9 链接1

[107] Addink R, Govers HAJ, Olie K. Desorption behaviour of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere 1995;31(8):3945–50 链接1

[108] McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Eng J 2002;86(3):343–68 链接1

[109] Rordorf BF. Thermal properties of dioxins, furans and related compounds. Chemosphere 1986;15(9−12):1325–32 链接1

[110] Kasai E, Harjanto S, Terui T, Nakamura T, Waseda Y. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere 2000;41(6):857–64 链接1

[111] Switzer C, Pironi P, Gerhard JI, Rein G, Torero JL. Volumetric scale-up of smouldering remediation of contaminated materials. J Hazard Mater 2014;268:51–60 链接1

[112] Ha SA, Choi KS. A study of a combined microwave and thermal desorption process for contaminated soil. Environ Eng Res 2010;15(4):225–30 链接1

相关研究