期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第1期 doi: 10.1016/J.ENG.2016.04.011

CMIP5 模式对大尺度年平均地面气温异常的多年代际趋势的模拟评估和未来预估

a College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
b Beijing Meteorological Observatory, Beijing 100089, China
c Joint Center for Global Change Studies, Beijing 100875, China

录用日期: 2016-12-14 发布日期: 2017-02-28

下一篇 上一篇

摘要

基于观测和第五次耦合模式比较计划(CMIP5) 模式的模拟结果,本文对全球、半球、半球陆地及海洋尺度的年平均地面气温异常在过去一百多年及两个代表性浓度路径(RCPs) 情景下的多年代际变化及趋势进行了评估分析。根据模式对全球平均地面气温异常的时间变率、长期趋势、多年代际变化及趋势的模拟能力,筛选出15 个模式进行分析。观测结果表明,北半球陆地、北半球海洋和南半球海洋平均地面气温异常与全球平均地面气温异常具有相似的多年代际变化特征:在1900—1944 年及1971—2000 年呈现增暖趋势,并在1945—1970 年和2001—2013 年呈现增暖停滞甚至变冷趋势。模式能够基本再现以上观测特征。然而,与以上变化不同的是,南半球陆地的平均地面气温在1945—1970 年呈现增暖趋势,并且模式不能很好模拟该特征。对于近期的增暖停滞阶段(2001—2013 年),BCC-CSM1-1-m 模式、CMCC-CM 模式、GFDL-ESM2M 模式及NorESM1-ME模式在RCP4.5 和RCP8.5 情景下预估的全球及半球尺度的地面气温异常趋势值最接近观测值,表明它们具有较好的预估能力。由于这四个模式在地面气温异常的多年代际趋势上具有较好的模拟及预估性能,故选择它们来预估2006—2099 年的地面气温异常在全球及半球尺度上的变化特征。结果显示在RCP4.5(RCP8.5) 情景下,所选四个模式集合平均的全球、北半球及南半球年平均地面气温异常趋势值分别为0.17(0.29)、0.22(0.36) 及0.11(0.23) °C•decade–1,其趋势值明显小于未经过模式筛选的CMIP5 模式集合的结果。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Friedlingstein P, et al. Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al., editors Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2007. p. 1–18.

[ 2 ] Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, et al, editors. Climate change 2013: the physical science basis. Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2013.

[ 3 ] Knight J, Kennedy J, Folland C, Harris G, Jones GS, Palmer M, et al. Do global temperature trends over the last decade falsify climate predictions? B Am Meteorol Soc 2009;90(8):S22–3.

[ 4 ] Li J, Sun C, Jin FF. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 2013;40(20):5497–502. 链接1

[ 5 ] Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 2012;117(D8):D08101.

[ 6 ] Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang 2013;3(1):52–8.

[ 7 ] Ding Y, Ren G, Zhao Z, Xu Y, Luo Y, Li Q, et al. Detection, causes and projection of climate change over China: an overview of recent progress. Adv Atmos Sci 2007;24(6):954–71. 链接1

[ 8 ] Zhou T, Yu R. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J Climate 2006;19(22):5843–58. 链接1

[ 9 ] Stott PA, Tett SF, Jones GS, Allen MR, Mitchell JF, Jenkins GJ. External control of 20th century temperature by natural and anthropogenic forcings. Science 2000;290(5499):2133–7. 链接1

[10] Knutson TR, Zeng F, Wittenberg AT. Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Climate 2013;26(22):8709–43. 链接1

[11] Jones GS, Stott PA, Christidis N. Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J Geophys Res 2013;118(10):4001–24.

[12] Shukla J, DelSole T, Fennessy M, Kinter J, Paolino D. Climate model fidelity and projections of climate change. Geophys Res Lett 2006;33(7):L07702.

[13] Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. B Am Meteorol Soc 2012;93(4):485–98. 链接1

[14] Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 2011;109(1-2):213–41. 链接1

[15] Sen PK. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 1968;63(324):1379–89. 链接1

[16] Mann ME. On smoothing potentially non-stationary climate time series. Geophys Res Lett 2004;31(7):L07214.

[17] Vial J, Dufresne JL, Bony S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dynam 2013;41(11-12):3339–62. 链接1

[18] Kosaka Y, Xie SP. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013;501(7467):403–7. 链接1

[19] Zhang L, Ding Y, Wu T, Xin X, Zhang Y, Xu Y. The 21th century annual mean surface air temperature change and the 2?°C warming threshold over the globe and China as projected by the CMIP5 models. Acta Meteorol Sin 2013;71(6):1047–60. Chinese.

[20] Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, et al. Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci USA 2010;107(5):1833–7. 链接1

[21] Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 2011;1(7):360–4. 链接1

[22] Sun C, Li J, Jin FF. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dynam 2015;45(7-8):2083–99. 链接1

相关研究