期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第1期 doi: 10.1016/J.ENG.2017.01.007

趋化信号接枝的掺镁羟基磷灰石促进间充质干细胞归巢

a Department of Engineering, University of Messina, Messina 98166, Italy
b Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy

收稿日期: 2016-10-14 修回日期: 2017-01-13 录用日期: 2017-02-27 00:00:00.000 发布日期: 2017-02-28

下一篇 上一篇

摘要

干细胞归巢,即间充质干细胞定向趋化募集至损伤处,对体内骨再生起重要作用。本文以人纤连蛋白片段III1-C(FF III1-C) 及纤连蛋白类似物的肽序列Gly-Arg-Gly-Asp-Ser-Pro-Lys 作为趋化因子,分别共价结合至掺镁羟基磷灰石中,用于研究模拟肽序列接枝的掺镁羟基磷灰石对间充质细胞归巢的调控作用。用于检测间充质干细胞活力的MTT 法初步研究发现释放趋化信号的掺镁羟基磷灰石可有效促进干细胞迁移。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Laurencin CT, Khan Y. Regenerative Engineering. Sci Transl Med? 2012;4(160):160ed9 链接1

[ 2 ] Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng? 2012;40(5):363–408 链接1

[ 3 ] Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RO. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies—where are we now? Stem Cells 2014;32(1):35–44 链接1

[ 4 ] Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014;2:14017 链接1

[ 5 ] Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015;3:15029 链接1

[ 6 ] Iannazzo D, Pistone A, Espro C, Galvagno S. Drug delivery strategies for bone tissue regeneration. In: Panseri S, Taraballi F, Cunha C, editors Biomimetic approaches for tissue healing. Foster City: OMICS Group eBooks; 2015. p. 1–39.

[ 7 ] Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One 2012;7(6):e38710 链接1

[ 8 ] Cunha C, Panseri S, Iannazzo D, Piperno A, Pistone A, Fazio M, et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012;23(46):465102 链接1

[ 9 ] Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, et al. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013;8: 1855–65 链接1

[10] Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005;8(3):131–6 链接1

[11] Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl 2013;33(3):1091–101 链接1

[12] Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 2014;25(42):425701 链接1

[13] Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011;32(7):1826–37 链接1

[14] Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008;19(1):239–47 链接1

[15] Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014;2014:921905 链接1

[16] Schantz JT, Chim H, Whiteman M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 2007;13(11):2615–24 链接1

[17] Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012;64(12):1292–309 链接1

[18] García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84(5):407–13 链接1

[19] Yun YR, Pham BH, Yoo YR, Lee S, Kim HW, Jang JH. Engineering of self-assembled fibronectin matrix protein and its effects on mesenchymal stem cells. Int J Mol Sci 2015;16(8):19645–56 链接1

[20] Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997;69(2):581–93 链接1

相关研究