期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第2期 doi: 10.1016/J.ENG.2017.02.006

烯烃生产新趋势

Laboratory for Chemical Technology, Ghent University, Ghent B-9052, Belgium

收稿日期: 2016-12-23 修回日期: 2017-01-28 录用日期: 2017-02-01 发布日期: 2017-03-16

下一篇 上一篇

摘要

在未来10 年内,蒸汽裂解仍将是主要的烯烃( 如乙烯和丙烯) 生产方式。由于日用品市场较大的不确定性,尽管原油储量下降和全球变暖在定程度上制约了裂解工艺,但其他替代技术和原料因为较低的经济可行,尚无法在化学工业界得到足够的投资。本文将些最有潜力的替代术与传统的蒸汽裂解工艺进行了对比,着重强调了这些替代术的主要瓶颈。部分上述工艺主要得益于页岩气和闲置天然气中大量廉价的丙烷乙烷和甲烷。从经济的角度来看,以甲烷为原料生产化工产品的路线如果行得,其经济效益将会十分显著原油的巨大储量以及未来市场对燃料需求下跌的预期则表明,些拥有成熟路线的工艺如费托合成或甲醇制汽油的前景并不光明。另方面,丰富廉价的乙烷和储量巨大的原油导致了蒸汽裂解工艺两极分化的趋势,这也给低碳烯烃的定向生产工艺,如丙烷催化脱氢,创了空间。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Zimmermann H, Walzl R. Ethylene. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2009.

[ 2 ] BP plc. BP statistical review of world energy. BP technical report. London: BP plc; 2013 Jun.

[ 3 ] United States Energy Information Administration. Annual energy outlook 2015 with projections to 2040. Washington, DC: United States Energy Information Administration; 2015.

[ 4 ] Sattler JJ, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 2014;114(20):10613–53 链接1

[ 5 ] Bruijnincx PC, Weckhuysen BM. Shale gas revolution: An opportunity for the production of biobased chemicals? Angew Chem Int Ed Engl 2013;52(46):11980–7 链接1

[ 6 ] Siirola JJ. The impact of shale gas in the chemical industry. AIChE J 2014;60(3):810–9 链接1

[ 7 ] Yang CJ. US shale gas versus China’s coal as chemical feedstock. Environ Sci Technol 2015;49(16):9501–2 链接1

[ 8 ] Ding J, Hua W. Game changers of the C3 value chain: Gas, coal, and biotechnologies. Chem Eng Technol 2013;36(1):83–90 链接1

[ 9 ] New ExxonMobil and Saudi Aramco technologies produce ethylene directly from crude oil, cutting refining costs, IHS says [Interent]. London: IHS Markit; 2016 Jul 6 [cited 2016 Dec 16].Available from: http://news.ihsmarkit.com/press-release/new-exxonmobil-and-saudi-aramco-technologies-produce-ethylene-directly-crude-oil-cutti.

[10] Al-Salem S, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag 2009;29(10):2625–43 链接1

[11] Al-Salem S, Lettieri P, Baeyens J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energ Combust 2010;36(1):103–29 链接1

[12] Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 2012;38:68–94 链接1

[13] Putro JN, Soetaredjo FE, Lin SY, Ju YH, Ismadji S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 2016;6(52):46834–52 链接1

[14] Van Geem KM, Reyniers MF, Marin GB. Challenges of modeling steam cracking of heavy feedstocks. Oil Gas Sci Technol?Rev IFP 2008;63(1):79–94 链接1

[15] Nizamoff AJ. Renewable liquids as steam cracker feedstocks, PERP09/10S12.White Plains: Nexant, Inc.; 2010 Oct.

[16] Foster J. Platts special report: Petrochemicals. Can shale gale save the naphtha crackers?London: Platts; 2013 Jan.

[17] Longden R. INEOS Europe and Evergas enter into long-term shipping agreements [Internet].?Rolle: INEOS Olefins and Polymers Europe; 2013 Jan 23 [cited 2016 Dec 16]. Available from: http://www.ineos.com/news/shared-news/ineos-europe-and-evergas-enter-into-long-term-shipping-agreements/.

[18] Tullo AH. Ethane supplier to the world—Chemical makers on three continents are set to tap into cheap feedstock from the US. Chem Eng News 2016; 94(44):28–9.

[19] Pang P. Unconventional feedstocks to increase China’s clout in global chemical markets [Interent]. London: IHS Markit; 2014 May 20 [cited 2016 Dec 16]. Available from: http://blog.ihs.com/q12-unconventional-feedstocks-to-increase-chinas-clout-in-global-chemical-markets.

[20] Plotkin JS. The propylene gap: How can it be filled? Washington, DC: American Chemical Society; 2015 Sep.

[21] Kumar S, Panda AK, Singh R K. A review on tertiary recycling of high-density polyethylene to fuel. Resour Conserv Recy 2011;55(11):893–910 链接1

[22] Garforth AA, Ali S, Hernández-Martínez J, Akah A. Feedstock recycling of polymer wastes. Curr Opin Solid St M 2004;8(6):419–25 链接1

[23] Kee RJ, Karakaya C, Zhu H. Process intensification in the catalytic conversion of natural gas to fuels and chemicals. P Combust Inst 2017;36(1):51–76 链接1

[24] Spath PL, Dayton DC. Preliminary screening; Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Technical report. Golden: National Renewable Energy Laboratory; 2003 Dec. Report No.: NREL/TP-510-34929. DOE Contract No.: AC36-99-GO10337.

[25] Stöcker M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Micropor Mesopor Mat 1999;29(1–2):3–48 链接1

[26] Dry ME. High quality diesel via the Fischer–Tropsch process—A review. J Chem Technol Biot 2002;77(1):43–50 链接1

[27] Chang CD, Silvestri AJ. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 1977;47(2):249–59 链接1

[28] Keil FJ. Methanol-to-hydrocarbons: Process technology. Micropor Mesopor Mat 1999;29(1–2):49–66 链接1

[29] Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 2005;106(1–4):103–7 链接1

[30] Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catal 2015;5(3):1922–38 链接1

[31] Chen D, Moljord K, Holmen A. A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Micropor Mesopor Mat 2012;164:239–50 链接1

[32] Dry ME. Fischer–Tropsch reactions and the environment. Appl Catal A?Gen 1999;189(2):185–90 链接1

[33] Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A ? Gen 1999;186(1–2):3–12 链接1

[34] Wood DA, Nwaoha C, Towler BF. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng 2012;9:196–208 链接1

[35] Dry ME. The Fischer–Tropsch process: 1950–2000. Catal Today 2002;71(3–4):227–41 链接1

[36] Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM. Some understanding of Fischer–Tropsch synthesis from density functional theory calculations. Top Catal 2010;53(5):326–37 链接1

[37] Dry ME. Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A?Gen 1996;138(2):319–44 链接1

[38] Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012;335(6070):835–8 链接1

[39] Torres Galvis HM, de Jong KP. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal 2013;3(9):2130–49 链接1

[40] Kondratenko EV, Baems M. Oxidative Coupling of Methane. In:Ertl G,KnözingerH, Schüth F, Weitkamp J, editors Handbook of heterogeneous catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 3010–23 链接1

[41] Kondratenko EV, Schlüter M, Baerns M, Linke D, Holena M. Developing catalytic materials for the oxidative coupling of methane through statistical analysis of literature data. Catal Sci Technol 2015;5(3):1668–77 链接1

[42] Olivos-Suarez AI, Szécsényi À, Hensen EJM, Ruiz-Martinez J, Pidko EA, Gascon J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities. ACS Catal 2016;6(5):2965–81 链接1

[43] Keller GE, Bhasin MM. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J Catal 1982;73(1):9–19 链接1

[44] Galadima A, Muraza O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J Ind Eng Chem 2016;37:1–13 链接1

[45] Jašo S, Arellano-Garcia H, Wozny G. Oxidative coupling of methane in a fluidized bed reactor: Influence of feeding policy, hydrodynamics, and reactor geometry. Chem Eng J 2011;171(1):255–71 链接1

[46] Mleczko L, Pannek U, Niemi VM, Hiltunen J. Oxidative coupling of methane in a fluidized-bed reactor over a highly active and selective catalyst. Ind Eng Chem Res 1996;35(1):54–61 链接1

[47] Karakaya C, Kee RJ. Progress in the direct catalytic conversion of methane to fuels and chemicals. Prog Energ Combust 2016;55:60–97 链接1

[48] Xu M, Lunsford JH. Effect of temperature on methyl radical generation over Sr/La2O3catalysts. Catal Lett 1991;11(3–6):295–300 链接1

[49] Feng Y, Niiranen J, Gutman D. Kinetic studies of the catalytic oxidation of methane. 1. Methyl radical production on 1% Sr/La2O3. J Phys Chem 1991;95(17):6558–63 链接1

[50] Taylor RP, Schrader GL. Lanthanum catalysts for CH4 oxidative coupling: A comparison of the reactivity of phases. Ind Eng Chem Res 1991;30(5):1016–23 链接1

[51] Tang L, Yamaguchi D, Wong L, Burke N, Chiang K. The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane. Catal Today 2011;178(1):172–80 链接1

[52] Ito T, Wang J, Lin CH, Lunsford JH. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J Am Chem Soc 1985;107(18):5062–8 链接1

[53] Arndt S, Simon U, Heitz S, Berthold A, Beck B, Görke O, et al.Li-doped MgOfrom different preparative routes for the oxidative coupling of methane. Top Catal 2011;54(16):1266–85 链接1

[54] Myrach P, Nilius N, Levchenko SV, Gonchar A, Risse T, Dinse KP, et al.Temperature-dependent morphology, magnetic and optical properties of Li-doped MgO. Chem Cat Chem 2010;2(7):854–62 链接1

[55] Hiyoshi N, Ikeda T. Oxidative coupling of methane over alkali chloride–Mn–Na2WO4/SiO2 catalysts: Promoting effect of molten alkali chloride. Fuel Process Technol 2015;133:29–34 链接1

[56] Elkins TW, Hagelin-Weaver HE. Characterization of Mn–Na2WO4/SiO2 and Mn–Na2WO4/MgO catalysts for the oxidative coupling of methane. Appl Catal A?Gen 2015;497:96–106 链接1

[57] Koirala R, Büchel R, Pratsinis SE, Baiker A. Oxidative coupling of methane on flame-made Mn–Na2WO4/SiO2: Influence of catalyst composition and reaction conditions. Appl Catal A?Gen 2014;484:97–107 链接1

[58] Huang P, Zhao Y, Zhang J, Zhu Y, Sun Y. Exploiting shape effects of La2O3nanocatalysts for oxidative coupling of methane reaction. Nanoscale 2013;5(22):10844–8 链接1

[59] Hou YH, Han WC, Xia WS, Wan HL. Structure sensitivity of La2O2CO3catalysts in the oxidative coupling of methane. ACS Catal 2015;5(3):1663–74 链接1

[60] Song J, Sun Y, Ba R, Huang S, Zhao Y, Zhang J, et al.Monodisperse Sr–La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons. Nanoscale 2015;7(6):2260–4 链接1

[61] Scher EC, Cizeron JM, Schammel WP, Tkachenko A, Gamoras J, Karshtedt D, et al., inventors; Siluria Technologies, Inc., assignee. Method for the oxidative coupling of methane in the presence of a nanowire catalyst. European Patent EP 2853521 A1. 2015 Apr 1.

[62] Schammel WP, Wolfenbarger J, Ajinkya M, Mccarty J, Cizeron JM, Weinberger S, et al., inventors; Siluria Technologies, Inc., assignee. Oxidative coupling of methane systems and methods. PCT Patent WO 2013177433 A2. 2013 Nov 28.

[63] Zohour B, Noon D, Senkan S. New insights into the oxidative coupling of methane from spatially resolved concentration and temperature profiles. Chem Cat Chem 2013;5(10):2809–12 链接1

[64] Horn R, Williams K A, Degenstein N J, Schmidt L D. Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations. J Catal 2006;242(1):92–102 链接1

[65] Donazzi A, Maestri M, Michael BC, Beretta A, Forzatti P, Groppi G, et al.Microkinetic modeling of spatially resolved autothermal CH4 catalytic partial oxidation experiments over Rh-coated foams. J Catal 2010;275(2):270–9 链接1

[66] Mleczko L, Baerns M. Catalytic oxidative coupling of methane—Reaction engineering aspects and process schemes. Fuel Process Technol 1995;42(2–3):217–48 链接1

[67] Dautzenberg FM, Schlatter JC, Fox JM, Rostrup-Nielsen JR, Christiansen LJ. Catalyst and reactor requirements for the oxidative coupling of methane. Catal Today 1992;13(4):503–9 链接1

[68] Sattler JJ, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, et al.Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew Chem 2014;126(35):9405–10 链接1

[69] Ren T, Daniëls B, Patel MK, Blok K. Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resour Conserv Recy 2009;53(12):653–63 链接1

[70] Naims H. Economics of carbon dioxide capture and utilization—A supply and demand perspective. Environ Sci Pollut Res Int 2016;23(22):22226–41 链接1

[71] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 2014;39:426–43 链接1

[72] Weikl MC, Schmidt G. Carbon capture in cracking furnaces. In: Proceedings of theAIChE 2010 Spring Meeting and the 6th Global Congress on Process Safety; 2010 Mar 21–25; San Antonio, USA; 2010.

相关研究