期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第2期 doi: 10.1016/J.ENG.2017.02.007

页岩气网络设计与运行之间的相互作用,包括CO2固存

Center for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

收稿日期: 2016-12-31 修回日期: 2017-02-13 录用日期: 2017-02-20 发布日期: 2017-04-01

下一篇 上一篇

摘要

随着能源需求的持续增长,作为非常规甲烷源(CH 4 )的页岩气显示出巨大的商业化潜力。但是,由于页岩气储层的渗透率极低,因此可能需要按顺序进行特殊程序,例如水平钻井,水力压裂,定期关井和注入二氧化碳(CO 2 )以提高天然气产量,最大程度地提高经济效益,并确保安全和无害环境的运营。尽管对此新兴技术进行了深入研究,但许多研究人员仅在孤立地研究页岩气设计和运营决策。实际上,这些决定是高度互动的,应该同时考虑。因此,本研究中解决的研究问题包括设计与运营决策之间的相互作用。在本文中,我们首先建立了页岩气藏的全物理模型。接下来,我们对重要设计和操作决策进行敏感性分析,例如井长,井眼布置,裂缝数量,裂缝距离,CO 2 注入速率和闭井调度,以获取增产效果。对页岩气网络复杂行为的深入见解。结果表明,页岩气产量最高的情况不一定是最有利可图的设计。钻探,压裂和CO 2 注入对这项技术的经济可行性具有重大影响。尤其是,由于成本高昂,除非使用CO 2 减税或补贴,否则使用CO 2 的增强气体回收(EGR)似乎不具有商业竞争力。隔离。研究还发现,设计和运营决策之间的相互作用非常重要,这些决策应同时进行优化。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Sharifzadeh M. Integration of process design and control: A review. Chem Eng Res Des 2013;91(12):2515–49 链接1

[ 2 ] Sharifzadeh M, Thornhill NF. Integrated design and control using a dynamic inversely controlled process model. Comput Chem Eng 2013;48:121–34 链接1

[ 3 ] Sharifzadeh M, Meghdari M, Rashtchian D. Multi-objective design and operation of solid oxide fuel cell (SOFC) triple combined-cycle power generation systems: Integrating energy efficiency and operational safety. Appl Energy 2017;185(Part 1):345–61 链接1

[ 4 ] Ran B, Kelkar M. Fracture stages optimization in Bakken shale formation. In: Proceedings of the 3rd Unconventional Resources Technology Conference; 2015 Jul 20–22; San Antonio, USA. San Antonio: URTeC; 2015.

[ 5 ] Balan HO, Gupta A, Georgi DT, Al-Shawaf AM. Optimization of well and hydraulic fracture spacing for tight/shale gas reservoirs. In: Proceedings of the 4rd Unconventional Resources Technology Conference; 2016 Aug 1–3 ; San Antonio, USA. San Antonio: URTeC; 2016 链接1

[ 6 ] Whitson CH, Rahmawati SD, Juell A. Cyclic shut-in eliminates liquid-loading in gas wells. In: Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition; 2012 Mar 20–22; Vienna, Austria. Richardson:Society of Petroleum Engineers; 2012 链接1

[ 7 ] Knudsen BR. Production optimization in shale gas reservoirs [dissertation]. Trondheim: Norwegian University of Science and Technology; 2010.

[ 8 ] Knudsen BR, Foss B, Whitson CH, Conn AR. Target-rate tracking for shale-gas multi-well pads by scheduled shut-ins. IFAC Proceedings Volumes 2012;45(15):107–13 链接1

[ 9 ] Knudsen BR, Foss B. Shut-in based production optimization of shale-gas systems. Comput Chem Eng 2013;58:54–67 链接1

[10] Knudsen BR, Grossmann IE, Foss B, Conn AR. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Comput Chem Eng 2014;63:234–49 链接1

[11] Vermylen JP. Geomechanical studies of the Barnett shale [dissertation]. California: Stanford University; 2011.

[12] Eshkalak MO, Al-Shalabi EW, Sanaei A, Aybar U, Sepehrnoori K. Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the re-fracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs. J Nat Gas Sci Eng 2014;21:1015–24 链接1

[13] Kulga B, Dilmore R, Wyatt C, Ertekin T. Investigation of CO2 storage and enhanced gas recovery in depleted shale gas formations using a dual-porosity/dual-permeability, multiphase reservoir simulator [Internet]. Morgantown: US Department of Energy, National Energy Technology Laboratory; 2014 Sep 25 [cited 2017 Mar 10]. Available from: https://www.netl.doe.gov/File Library/Research/onsite research/publications/NETL-TRS-4-2014_CO2-Storage-and-Enhanced-Gas-Recovery_20140925.pdf.

[14] Li X, Elsworth D. Geomechanics of CO2 enhanced shale gas recovery. J Nat Gas Sci Eng 2015;26:1607–19 链接1

[15] Koederitz LF. Lecture notes on applied reservoir simulation. Singapore: World Scientific; 2005 链接1

[16] Soeder DJ. Petrophysical characterization of the Marcellus & other gas shales [Internet]. 2011 Sep 28 [cited 2017 Feb 4]. Available from: http://www.thepttc.org/workshops/eastern_092811/eastern_092811_Soeder.pdf.

[17] Wang C, Wu Y. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests. Petroleum 2015;1(2):133–8 链接1

[18] Swami V, Clarkson CR, Settari A. Non-Darcy flow in shale nanopores: Do we have a final answer? In: Proceedings of the SPE Canadian Unconventional Resources Conference; 2012 Oct 30–Nov 1; Calgary, Canada. Richardson: Society of Petroleum Engineers; 2012 链接1

[19] Aguilera R. Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winland r35 values on Pickett plots. Am Assoc Pet Geol Bull 2002;86(4):605–24.

[20] Liu J, Qiu Z, Huang W, Luo Y, Song D. Nano-pore structure characterization of shales using gas adsorption and mercury intrusion techniques. J Chem Pharm Res 2014;6(4):850–7.

[21] Cho Y, Ozkan E, Apaydin OG. Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Reserv Eval Eng 2013;16(2):216–28 链接1

[22] Ozkan E, Brown ML, Raghavan RS, Kazemi H. Comparison of fractured horizontal-well performance in conventional and unconventional reservoirs. Dermatol Surg 2009;27(8):703–8 链接1

[23] Queipo NV, Verde AJ, Canelón J, Pintos S. Efficient global optimization for hydraulic fracturing treatment design. J Petrol Sci Eng 2002;35(3–4):151–66 链接1

[24] Houzé O Tauzin E, Artus V, Larsen L. The analysis of dynamic data in shale gas reservoirs—Part 1 [Internet]. 2010 Dec [cited 2017 Mar 10]. Available from: https://www.kappaeng.com/PDF/KAPPA- The Analysis of Dynamic Data in Shale Gas Reservoirs 1.pdf.

[25] Houzé O, Trin S, Tauzin E. The analysis of dynamic data in shale gas reservoirs—Part 2 [Internet]. 2010 Dec [cited 2017 Mar 10]. Available from: https://www.kappaeng.com/PDF/KAPPA- The Analysis of Dynamic Data in Shale Gas Reservoirs 2.pdf.

[26] Houzé O, Trin S, Tauzin E. The analysis of dynamic data in shale gas reservoirs—Part 3 [Internet]. 2010 Dec [cited 2017 Mar 10]. Available from: https://www.kappaeng.com/PDF/KAPPA- The Analysis of Dynamic Data in Shale Gas Reservoirs 3.pdf.

[27] Cipolla CL, Lolon EP, Erdle JC, Rubin B. Reservoir modeling in shale-gas reservoirs. SPE Reserv Eval Eng 2010;13(4):638–53 链接1

[28] Wang L, Torres A, Xiang L, Fei X, Naido A, Wu W. A technical review on shale gas production and unconventional reservoirs modeling. Nat Resour 2015;6(3):141–51 链接1

[29] Schlumberger. E CLIPSE technical description. Paris: Schlumberger; 2014.

[30] Wilson K. Optimization of shale resource development using reduced-physics surrogate models [dissertation]. California: Stanford University; 2012.

[31] Lake LW, Martin J, Ramsey JD, Titman S. A primer on the economics of shale gas production just how cheap is shale gas? J Appl Corp Finance 2013;25(4):87–96 链接1

[32] Wilson K, Durlofsky LJ. C omputational optimization of shale resource development using reduced-physics surrogate models. In: Proceedings of the SPE Western Regional Meeting; 2012 Mar 21–23; Bakersfield, USA. Richardson :Society of Petroleum Engineers; 2012 链接1

[33] Allinson G, Cinar Y, Hou W, Neal PR. The costs of CO2 transport and injection in Australia [Internet]. Canberra: Department of Resources, Energy and Tourism; 2009 Sep [cited 2017 Mar 10]. Available from: https://industry.gov.au/Energy/Documents/cei/cst/CO2Tech-The Costs of CO2 Transport and Injection in Australia.pdf.

[34] Williams-Kovacs J, Clarkson CR. Using stochastic simulation to quantify risk and uncertainty in shale gas prospecting and development. In: Proceedings of the Canadian Unconventional Resources Conference; 2011 Nov 15–17; Calgary, Canada. Richardson: Society of Petroleum Engineers; 2011 链接1

相关研究