期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.002

生物质垃圾制沼气技术综述

a Faculty of Science and Engineering, University of Groningen, Groningen 9747 AG, the Netherlands
b Union of Agricultural Cooperatives of Monofatsi, Heraklion 700 16, Greece

收稿日期: 2016-10-27 修回日期: 2017-02-18 录用日期: 2017-02-19 发布日期: 2017-05-22

下一篇 上一篇

摘要

当今时代,人类对化石燃料的不合理利用和温室气体对环境的影响,使研究者关注有机资源和垃圾的可持续能源转化。全球的能源需求非常大,主要能源来自化石能源。目前的研究认为厌氧消化是一种高效的可替代技术,其既能产生生物燃料,又能可持续地处理垃圾。在沼气工业,为了促进沼气的生成和提高质量,有几种不同的技术趋势。然而,投资厌氧消化的成功取决于原料成本低和沼气使用范围广( 热能、电能和燃料)。在欧洲能源市场,沼气的生产一直在增长,为生物能源的发展提供了一条经济的替代选择。本文的目的是对由木质纤维素类的生物垃圾生产沼气进行综述,为沼气经济提供重要信息。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] International Energy Agency. World energy outlook special report 2015: Energy and climate change. Final report. Paris: OECD/IEA; 2015.

[ 2 ] United Nations Environment Programme. The emissions gap report 2014: A UNEP synthesis report. Final report. Nairobi: UNEP; 2014.

[ 3 ] van Foreest F. Perspectives for biogas in Europe. Oxford: Oxford Institute for Energy Studies; 2012.

[ 4 ] []Nishio N, Nakashimada Y. Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 2007;103(2):105–12. 链接1

[ 5 ] EurObserv’ER. The state of renewable energies in Europe. Report. Paris: EurObserv’ER; 2014.

[ 6 ] Wagner L. Trends from the use of biogas technology in Germany. In: Proceedings of the VIV Asia Biogas Conference ; 2015 Mar 12; Bangkok, Thailand; 2015.

[ 7 ] Edita Vagonyte. Biogas & biomethane in Europe. Work package 4: Biogas & Biomethane. Report. Brussels: European Biomass Association; 2015.

[ 8 ] Soetaert W, Vandamme EJ. Biofuels in perspective. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 1–8.

[ 9 ] Lin Y, Tanaka S. Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol 2006;69(6):627–42. 链接1

[10] Weiland P, Verstraete W, van Haandel A. Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 171–96.

[11] Deublein D, Steinhauser A. History and status to date in other countries. In: Deublein D, Steinhauser A, editors Biogas from waste and renewable resources : An introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 35–43.

[12] Abbasi T, Tauseef SM, Abbasi SA. Biogas and global warming. In: Abbasi T, Tauseef SM, Abbasi SA, editors Biogas energy. New York: Springer; 2012, p. 25–34.

[13] European Biogas Association. Biogas: Simply the best. Report. Brussels: European Biogas Association. 2011.

[14] [Flach B, Lieberz S, Rondon M, Williams B, Teike C. EU-28 biofuels annual 2015. Report. Washington, DC: USDA Foreign Agricultural Service ; 2015 Jul. Report No.: NL5028.

[15] EurObserv’ER. Biogas barometer. Study report. Brussels: Intelligent Energy Europe; 2014.

[16] European Biomass Association. A biogas road map for Europe. Report. Brussels: European Biomass Association; 2009.

[17] BIOGAS3 Consortium. European legislative and financial framework for the implementation of small-scale biogas plants in agro-food & beverage companies. Brussels: Intelligent Energy Europe; 2014. Grant agreement: IEE/13/477/SI2.675801.

[18] Stucki M, Jungbluth N, Leuenberger M. Life cycle assessment of biogas production from different substrates. Final report. Bern: Federal Department of Environment, Transport, Energy and Communications , Federal Office of Energy; 2011Dec.

[19] Sustainable Energy Authority of Ireland. Gas yields table. Dublin: Sustainable Energy Authority of Ireland; 2002.

[20] Fachagentur Nachwachsende Rohstoffe. Bioenergy in Germany: Facts and figures. Report. Bonn: Federal Ministry of Food, Agriculture and Consumer Protection; 2012Jan.

[21] Braun R. Anaerobic digestion: A multi-faceted process for energy, environmental management and rural development. In: Ranalli P, editor Improvement of crop plants for industrial end uses. Dordrecht: Springer; 2007. p. 335–415.

[22] Braun R. Biogas—Methane treatment of organic waste. Wien: Springer; 1982. Germany.

[23] [Zubr J. Methanogenic fermentation of fresh and ensiled plant materials. Biomass 1986;11(3):159–71. 链接1

[24] Fachagentur Nachwachsende Rohstoffe. Biogas: Base line data for Germany. Gülzow: Fachagentur Nachwachsende Rohstoffe; 2008. Germany.

[25] ATV-DVWK. Thermische, chemische und biochemische Desintegrationsverfahren: 3. Arbeitsbericht der Arbeitsgruppe AK-1.6 “Klärschlammdesintegration”. Corresp Wastewater 2003;50:796–804. Germany.

[26] Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 2006;31(14):2385–92. 链接1

[27] Philbrook A, Alissandratos A, Easton CJ. Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass, environmental biotechnology. In: Marian P, editor New approaches and prospective applications. Rijeka: InTech; 2013. p. 39–64.

[28] Iqbal HMN, Ahmed I, Zia MA, Irfan M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2011;2(3):149–56. 链接1

[29] Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009;48(8):3713–29. 链接1

[30] Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem 2010;3(11):1227–35. 链接1

[31] Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 2010;498(1–2):61–6. 链接1

[32] Menon V, Rao M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Pror Energy Combust Sci 2012;38(4):522–50. 链接1

[33] Bertero M, de la Puente G, Sedran U. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 2012;95:263–71. 链接1

[34] Iqbal HMN, Kyazze G, Keshavarz T. Advances in valorization of lignocellulosic materials by bio-technology: An overview. BioResources 2013;8(2):3157–76.

[35] Prassad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycling 2007;50(1):1–39. 链接1

[36] Ratnaweeraa DR, Saha D, Pingali SV, Labbé N, Naskar AK, Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv 2015;5(82):67258–66. 链接1

[37] Fengel D, Wegener G. Wood: Chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1984.

[38] Deguchi S, Mukai SA, Tsudome M, Horikoshi K. Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 2006;18(6):729–32. 链接1

[39] Klemm D, Schmauder HP, Heinze T. Cellulose. Biopolymers Online 2005;6:277–312.

[40] Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 2005;124(1):1081–99. 链接1

[41] Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 2003;30(5):279–91. 链接1

[42] Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasic R. Hemicelluloses for fuel ethanol: A review. Bioresour Technol 2010;101(13):4775–800. 链接1

[43] Sun R, Sun XF, Tomkinson J. Hemicelluloses and their derivatives. In: Gatenholm P. Tenkanen M, editors Hemicelluloses: Science and technology . Washington, DC: American Chemical Society; 2004. p. 2–22.

[44] Ebringerová A, Hromádková Z, Heinze T. Hemicellulose. In: Heinze T, editor Polysaccharides I. Structure, characterization and use. Berlin: Springer; 2005. p.1–67.

[45] Gray MC, Converse AO, Wyman CE. Sugar monomer and oligomer solubility. Data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol 2003;105(1):179–93. 链接1

[46] Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 1994;19(5):797–841. 链接1

[47] Garrote G, Dominguez H, Parajo JC. Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 1999;57(3):191–202. 链接1

[48] Balaban M, Ucar G. The effect of the duration of alkali treatment on the solubility of polyoses. Turk J Agric For 1999;23(6):667–71.

[49] Lawther JM, Sun R, Banks WB. Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 1996;60(11):1827–37. 链接1

[50] Sweet MS, Winandy JE. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung 1999;53(3):311–7.

[51] Mielenz JR. Ethanol production from biomass: Technology and commercialization status. Curr Opin Microbiol 2001;4(3):324–9. 链接1

[52] Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 2005;45(3):820–31. 链接1

[53] Demirbaş A. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 2005;27(4):327–37. 链接1

[54] Ladisch R, Mosier NS, Youngmi KIM, Ximenes E, Hogsett D. Converting cellulose to biofuels. Chem Eng Prog 2010;106(3):56–63.

[55] Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover with water. Biotechnol Bioeng 2004;86(1):88–98. 链接1

[56] Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Pror Energy Combust Sci 2014;42:35–53. 链接1

[57] Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 2011;29(6):675–85 链接1

[58] Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 2014;123(15):143–56 链接1

[59] Yang B, Wyman CE. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2008;2(1):26–40. 链接1

[60] Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L, editor Biofuels. Berlin: Springer; 2009. p. 67–93.

[61] Zhu Z, Pan H. Woody biomass treatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol 2010;101(13):4992–5002. 链接1

[62] Olofsson K, Bertlisson M, Lidén G. A short review on SSF—An interesting process option from lignocellulosic feedstocks. Biotechnol Biofuels 2008;1:1–7. 链接1

[63] Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100(1):10–8. 链接1

[64] Delgenés JP, Penaud V, Moletta R. Pretreatments for the enhancement of anaerobic digestion of solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes . London: IWA Publishing; 2002. p. 201–28.

[65] Montogomery LFR, Bochmann G. Pretreatment of feedstock for enhanced biogas production. Paris: IEA Bioenergy; 2014.

[66] Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 2008;9(9):1621–51. 链接1

[67] Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 2002;81(1):33–44. 链接1

[68] Weil JR, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M, et al.Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 1998;73(1):1–17. 链接1

[69] Shahriari H, Warith M, Hamoda M, Kennedy KJ. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag 2012;32(1):41–52. 链接1

[70] Xiao W, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1997;8(1):61–6. 链接1

[71] Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 2008;58(2):219–25. 链接1

[72] López Torres M, del Espinosa Lloréns M. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 2008;28(11):2229–34. 链接1

[73] Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 2016;23:44–53. 链接1

[74] Pecorini I, Baldi F, Carnevale EA, Corti A. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 2016;56:143–50. 链接1

[75] Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 2016;48:227–35. 链接1

[76] Abramson M, Shoseyov O, Hirsch S, Shani Z. Genetic modifications of plant cell walls to increase biomass and bioethanol production. In: Lee JW, editor Advanced biofuels and bioproducts. New York: Springer; 2013. p. 315–38.

[77] US Environmental Protection Agency (EPA). Biosolids technology fact sheet: Multi-stage anaerobic digestion. Report. Washington, DC: Office of Water, EPA; 2006Sep.

[78] Yu L, Ma J, Frear C, Zaher U, Chen S. Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system. United States Patent US 20130309740. 2013 Nov 21.

[79] Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes. Barcelona: IWA Publishing; 2002. p. 111–40.

[80] California Environmental Protection Agency. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Report. California: California Integrated Waste Management Board; 2008.

[81] Colussi I, Cortesi A, Piccolo CD, Galloa V, Fernandeza ASR, Vitanza R. Improvement of methane yield from maize silage by a two-stage anaerobic process. Chem Eng Trans 2013;32:151–6.

[82] Marín Pérez C, Weber A. Two stage anaerobic digestion system: Hydrolysis of different substrate. Landtechnik 2013;68(4):2 52–5.

[83] Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 2011;111(3):312–9. 链接1

[84] Park Y, Hong F, Cheon J, Hidaka T, Tsuno H. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 2008;105(1):48–54. 链接1

[85] Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res 2003;7(3):671–8. 链接1

[86] Kim J, Novak JT, Higgins MJ. Multi-staged anaerobic sludge digestion processes. J Environ Eng 2011;137(8):0000372.

[87] Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol 2012;111:122–6. 链接1

[88] Lindeboom REF, Fermoso FG, Weijma J, Zagt K, van Lier JB. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol 2011;64(3):647–53. 链接1

[89] Merkle W, Zielonka S, Oechsner H, Lemmer A. High-pressure anaerobic digestion up to 180 bar: The effects on biogas production and upgrading. In: Proceedings of the Progress in Biogas III Conference; 2014 Sep 10–11; Stuttgart,Deutschland; 2014.

[90] Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta 2002;1595(1–2):367–81. 链接1

[91] Merkle W, Baer K, Haag NL, Zielonka S, Ortloff F, Graf F, et al.High-pressure anaerobic digestion up to 100 bar: Influence of initial pressure on production kinetics and specific methane yields. Environ Technol 2017;38(3):337–44.

[92] Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci Technol 2003;48(4):77–84.

[93] Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 2011;15(1):821–6. 链接1

[94] Griffin ME, McMahon KD, Mackie RI, Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 1998;57(3):342–55. 链接1

[95] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol 2008;99(10):4044–64. 链接1

[96] Xu P, Koffas MAG. Metabolic engineering of Escherichia coli for biofuel production. Biofuels 2010;1(3):493–504 链接1

[97] Weng JK, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 2008;19(2):166–72. 链接1

[98] Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM. Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 1998;9(3):169–77. 链接1

[99] Karakashev D, Bastone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 2005;71(1):331–8. 链接1

[100] Klocke M, Nettmann E, Bergmann I, Mundt K, Souidiu K, Mumme J, et al.Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008;31(3):190–205. 链接1

[101] Yu Y, Lee C, Kim J, Hwangs S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005;89(6):670–9. 链接1

[102] Haruta S, Nakayama T, Nakamura K, Hemmi H, Ishii M, Igarashi Y, et al.Microbial diversity in biodegradation and reutilization processes of garbage. J Biosci Bioeng 2005;99(1):1–11. Erratum in: J Biosci Bioeng 2005;99(2):187–8. 链接1

[103] Russo L, Ladisch M. Gaps in the research of 2nd generation transportation biofuels. Final report. Paris: IEA Bioenergy; 2008.

[104] Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, et al.Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010;87(4):1303–15. 链接1

[105] Lynd LR, Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 2005;16(5):577–83. 链接1

[106] European Biofuels Technology Platform [Internet]. EBTP-SABS; c2007–2016 [cited 2016 Sep 9]. Development of enzymes and processes for cellulosic ethanol production. Ethanol fact sheet; [about 1 screens]. Available from: http://www.biofuelstp.eu/factsheets/ethanol-fact-sheet.html.

[107] Blanch HW. Bioprocessing for biofuels. Curr Opin Biotechnol 2012;23(3):390–5. 链接1

[108] Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, et al.Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 2010;4(1):77–93. 链接1

[109] Msangi S. Biofuels and a green economy [Internet]. Washington, DC: IFPRI. [cited 2012 May 16]. Available from: http://www.ifpri.org/blog/biofuels-and-green-economy.

[110] European Biogas Association. Biogas [Internet]. Brussels: EBA; c2013–2016. Available from: http://european-biogas.eu/biogas/.

[111] Åhman M. Biomethane in the transport sector—An appraisal of the forgotten option. Energy Policy 2010;38(1):208–17. 链接1

[112] European Environmental Agency. How much bioenergy can Europe produce without harming the environment? Report. Copenhagen: European Environmental Agency; 2006 Feb.

相关研究