期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.005

Ni-Bi 助剂用于α-Fe2O3

a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

收稿日期: 2017-01-19 修回日期: 2017-03-18 录用日期: 2017-03-22 发布日期: 2017-05-17

下一篇 上一篇

摘要

本文提出了镍-硼酸(Ni-Bi) 助催化剂负载于α 型三氧化二铁(Fe2O3) 具有提升表面动力学和钝化表面态的双重作用。Ni-Bi助剂的负载使Fe2O3 光电阳极的光电流起始电位产生230 mV 的负移,1.23 V(vs. RHE)下的光电流密度也提升了2.3 倍。Ni-Bi助剂层中的Bi 促进了产氧反应的脱质子步骤。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–8 链接1

[ 2 ] Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 2016;49(4):733–40 链接1

[ 3 ] Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, et al.Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 2014;136(19):7077–84 链接1

[ 4 ] Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 2011;4(5):1759–64 链接1

[ 5 ] Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 2011;23(5):1105–12 链接1

[ 6 ] Dinc? M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA 2010;107(23):10337–41 链接1

[ 7 ] Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 2012;134(15):6801–9 链接1

[ 8 ] Choi SK, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 2013;15(17):6499–507 链接1

[ 9 ] Gan J, Lu X, Rajeeva BB, Menz R, Tong Y, Zheng Y. Efficient photoelectrochemical water oxidation over hydrogen-reduced nanoporous BiVO4 with Ni-Bi electrocatalyst. Chem Electro Chem 2015;2(9):1385–95.

[10] Zhang P, Wang T, Chang X, Zhang L, Gong J. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew Chem Int Ed 2016;128(19):5945–9 链接1

[11] Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, et al.Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ Sci 2015;8(5):1493–500 链接1

[12] Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, van de Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater 2016;28(12):4231–42 链接1

[13] Kumagai H, Minegishi T, Sato N, Yamada T, Kubota J, Domen K. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 2015;3(16):8300–7 链接1

[14] Wang Z, Liu G, Ding C, Chen Z, Zhang F, Shi J, et al.Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C 2015;119(34):19607–12 链接1

[15] Kim JY, Youn DH, Kang K, Lee JS. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem 2016;128(36):11012–6 链接1

[16] Ahmed AY, Ahmed MG, Kandiel TA. Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 2016;120(41):23415–20 链接1

[17] Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, et al.α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal 2015;5(9):5292–300 链接1

[18] Klahr B, Hamann T. Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry. J Phys Chem C 2014;118(19):10393–9 链接1

[19] Yatom N, Neufeld O, Toroker MC. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 2015;119(44):24789–95 链接1

[20] Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2011;2(4):737–43 链接1

[21] Du C, Yang X, Mayer MT, Hoyt H, Xie J, McMahon G, et al.Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed 2013;52(48):12692–5 链接1

[22] Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343(6174):990–4 链接1

[23] Luo Z, Li C, Liu S, Wang T, Gong J. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci 2016;2017(8):91–100.

[24] Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 2015;137(26):8356–9 链接1

[25] Xu Y, Wang X, Chen H, Kuang D, Su C. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv Funct Mater 2016;26(24):4414–21 链接1

[26] Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting. Electrochem Commun 2012;23:41–3 链接1

[27] Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 2016;28(42):9266–91 链接1

[28] Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, et al.Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10(3):772–9 链接1

[29] Trze?niewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J Am Chem Soc 2015;137(48):15112–21 链接1

[30] Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater 2016;6(23):1600621–40 链接1

[31] Pham HH, Cheng MJ, Frei H, Wang LW. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. ACS Catal 2016;6(8):5610–7 链接1

[32] Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 2015;137(3):1305–13 链接1

[33] Koper MTM. Theory of the transition from sequential to concerted electrochemical proton-electron transfer. Phys Chem Chem Phys 2013;15(5):1399–407 链接1

相关研究