期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.03.018

利用六氟化硫示踪技术预估不同年龄阶段的放牧荷斯坦奶牛甲烷排放量

a Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK
b Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK

录用日期: 2017-08-17 发布日期: 2017-10-31

下一篇 上一篇

摘要

动物和日粮因素对牛肠道甲烷排放量影响的相关研究已经很普遍,但是关于放牧青年奶牛的甲烷排放量的可参考数据较少。本研究评估了荷斯坦奶牛在多年生黑麦草草地放牧时的生理状态对甲烷排放量的影响,分别进行了以下两个试验:试验1从2011年5月开始,为期11个星期,试验2从2011年8月开始,为期10个星期。在每个试验中,将荷斯坦奶牛分成三个处理组(每组12头),分别由小牛犊、一岁的母牛犊和妊娠母牛组成(平均年龄分别为8.5、14.5和20.5月龄)。在每个试验的最后一个星期利用六氟化硫示踪技术预估每头牛的甲烷排放量。干物质摄入量由代谢能需要量除以牧草中的代谢能含量计算而得。正如预期一样,活体重随年龄的增加而增加(P < 0.001),然而试验1中三个分组的体增重没有差异,试验2中的体增重随着年龄增加有不同程度的减少(P < 0.001)。在试验1中,妊娠母牛高于小牛犊的甲烷排放量(P < 0.001),而一岁母牛犊的甲烷排放量最高(g•d-1)。当用单位活体重、干物质摄入量和总能摄入量表示甲烷排放量时,一岁母牛犊比小牛犊和妊娠母牛的排放速率更高(P < 0.001)。在试验2中,甲烷排放量(g•d-1)随着年龄增加呈线性上升(P < 0.001),但是这种差异在一岁母牛犊和妊娠母牛中并不显著。妊娠母牛的甲烷/活体重的比值低于另外两组(P < 0.001),小牛犊的总能摄入量中甲烷能量输出的比值低于一岁母牛犊和妊娠母牛(P < 0.05)。根据所有数据建立甲烷排放量的预测方程。所有关系均为显著(P < 0.001),R²值的分布范围为0.630~0.682。这些模型表明:每增加1 kg活体重,甲烷排放量增加0.252 g•d-1;每增加1 kg•d-1干物质摄入量,甲烷排放量增加14.9 g•d-1;每增加1 MJ•d-1总能摄入量,甲烷能量输出增加0.046 MJ•d-1。当实际甲烷排放量不可测时,这些结果为我们提供了预估放牧母牛甲烷排放量的另一种方法。

图片

图1

图2

参考文献

[ 1 ] European Environment Agency.EEA greenhouse gas—Data viewer [Internet]. Copenhagen: European Environment Agency. [updated 2016 Dec 6; cited 2017 Jan 20]. Available from: http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer.

[ 2 ] Food and Agriculture Organization.Greenhouse gas emissions from the dairy sector—A life cycle assessment [Internet]. Copenhagen: Food and Agriculture Organization. 2010 [cited 2017 Jan 20]. Available from: http://www.fao.org/docrep/012/k7930e/k7930e00.pdf.

[ 3 ] Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci 2007;90(7):3456–66 链接1

[ 4 ] Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, et al.Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci 2010;93(6):2630–8 链接1

[ 5 ] Jiao HP, Yan T, Wills DA, Carson AF, McDowell DA. Development of prediction models for quantification of total methane emission from enteric fermentation of young Holstein cattle at various ages. Agric Ecosyst Environ 2014;183:160–6 链接1

[ 6 ] Johnson K, Huyler M, Westberg H, Lamb B, Zimmerman P. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environ Sci Technol 1994;28:359–62 链接1

[ 7 ] Grainger C, Clarke T, McGinn SM, Auldist MJ, Beauchemin KA, Hannah MC, et al.Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J Dairy Sci 2007;90(6):2755–66 链接1

[ 8 ] Muñoz C, Yan T, Wills DA, Murray S, Gordon AW. Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J Dairy Sci 2012;95(6):3139–48 链接1

[ 9 ] Dale AJ, Mayne CS, Laidlaw AS, Ferris CP. Effect of altering the grazing interval on growth and utilization of grass herbage and performance of dairy cows under rotational grazing. Grass Forage Sci 2008;63(2):257–69 链接1

[10] Park RS, Agnew RE, Gordon FJ, Steen RWJ. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Anim Feed Sci Technol 1998;72(1–2):155–67 链接1

[11] Porter MG. Comparison of sample preparation methods for the determination of the gross energy concentration of fresh silage. Anim Feed Sci Technol 1992;37(3–4):207–8 链接1

[12] Cushnahan A, Gordon FG. The effects of grass preservation on intake, apparent digestibility and rumen degradation characteristics. Anim Sci J 1995;60(3):429–38 链接1

[13] Agricultural and Food Research Council.Energy and protein requirements of ruminants. Report. Wallingford: CAB International; 1993.

[14] Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. IPCC guidelines for national greenhouse gas inventories. Copenhagen: Intergovernmental Panel on Climate Change (IPCC); 2006.

[15] Baggott SL, Cardenas L, Downes M, Garnett E, Jackson J, Li Y, et al.Greenhouse gas inventories for England, Scotland, Wales and Northern Ireland: 1990–2004. Report. Didcot: AEA Technology plc.; 2006 Nov. Report No.: AEAT/ENV/R/2318.

[16] Crompton LA, Mills JA, Kliam KE, Reynolds CK. Effects of feeding milled rapeseed on methane emission and milk fatty acid composition in lactating dairy cows. Adv Anim Biosci 2011;2:75.

[17] Yan T, Agnew RE, Gordon FJ, Porter MG. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest Prod Sci 2000;64(2–3):253–63 链接1

[18] Jiao HP, Dale AJ, Carson AF, Murray S, Gordon AW, Ferris CP. Effect of concentrate feed level on methane emissions from grazing dairy cows. J Dairy Sci 2014;97(11):7043–53 链接1

[19] Cavanagh A, McNaughton L, Clark H, Greaves C, Gowan JM, Pinares-Patino C, et al.Methane emissions from grazing Jersey × Friesian dairy cows in mid lactation. Aust J Exp Agric 2008;48(2):230–3 链接1

[20] Boland TM, Quinlan C, Pierce KM, Lynch MB, Kenny DA, Kelly AK, et al.The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J Anim Sci 2013;91(8):3867–74 链接1

[21] Deighton MH, Williams SRO, Lassey KR, Hannah MC, Boland TM, Eckard RJ, et al.Temperature, but not submersion or orientation, influences the rate of sulphur hexafluoride release from permeation tubes used for estimation of ruminant methane emissions. Anim Feed Sci Technol 2014;194:71–80 链接1

[22] Williams SRO, Moate PJ, Hannah MC, Ribaux BE, Wales WJ, Eckard RJ. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim Feed Sci Technol 2011;170(3–4):265–76 链接1

[23] Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995;73(8):2483–92 链接1

[24] Bannink A, van Schijndel MW, Dijkstra J. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim Feed Sci Technol 2011;166– 7:603–18 链接1

[25] Boadi DA, Wittenberg KM, Kennedy AD. Validation of the sulphur hexafluoride (SF6) tracer gas technique for measurement of methane and carbon dioxide production by cattle. Can J Anim Sci 2002;82(2):125–31 链接1

[26] Moe PW, Tyrell HF. Methane production in dairy cows. J Dairy Sci 1979;62(10):1583–6 链接1

[27] Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants. Br J Nutr 1965;19(4):511–22 链接1

[28] McCaughey WP, Wittenberg K, Corrigan D. Methane production by steers on pasture. Can J Anim Sci 1997;77(3):519–24 链接1

[29] Hart KJ, Martin PG, Foley PA, Kenny DA, Boland M. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle. J Anim Sci 2009;87(10):3342–50 链接1

[30] Johnson DE, Ward GM, Ramsey JJ. Livestock methane: Current emissions and mitigation potential. In: Kornegay ET, editor Nutrient management of food animals to enhance and protect the environment. New York: CRC Press Inc.; 1996. p. 219–33.

[31] Yan T, Mayne CS, Porter MG. Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets. In: Proceedings of the 2nd International Conference on Greenhouse Gases and Animimal Agriculture; 2005 Sep 20–24; Zurich, Switzerland. Amsterdam: Elsevier; 2006. p. 131–4 链接1

[32] Mills JA, Kebreab E, Yates CM, Crompton LA, Cammell SB, Dhanoa MS, et al.Alternative approaches to predicting methane emissions from dairy cows. J Anim Sci 2003;81(12):3141–50 链接1

[33] Zhao YG, O’Connell NE, Yan T. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambers. J Anim Sci 2016;94(6):2425–35 链接1

[34] Carson AF, Dawson LER, McCoy MA, Kilpatrick DJ, Gordon FJ. Effects of rearing regime on body size, reproductive performance and milk production during the first lactation in high genetic merit dairy herd replacements. Anim Sci 2002;74(3):553–65 链接1

相关研究