期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第3期 doi: 10.1016/J.ENG.2017.03.019

钽基氮氧化物——窄带隙光催化剂用于太阳能制氢

Nanomaterials Center, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

收稿日期: 2017-02-15 修回日期: 2017-05-04 录用日期: 2017-05-05 发布日期: 2017-05-22

下一篇 上一篇

摘要

光催化分解水可以将太阳能直接转化为氢能,是一种有效利用太阳能的途径。开发用于太阳能制氢的高效且稳定的光催化剂是光催化研究领域的重要目标之一。钽基氮氧化物具有窄的带隙宽度,并且光生电子和空穴的势能足够用来分解水,因此该类光催化剂最有可能实现太阳能制氢。到目前为止,全世界的研究小组对钽基氮氧化物光催化剂进行了系统而深入的研究,取得了大量的成果。然而,钽基氮氧化物的太阳能制氢效率还远远低于理论值。如何更好地设计这些材料进而提高其太阳能制氢效率这一命题是十分重要和有意义的。本文总结了钽基氮氧化物用于光催化制氢的研究和发展过程,着重分析了用于提高光催化分解水效率的各种方法。最后,探讨了窄带隙钽基氮氧化物光催化分解水研究领域的未来发展趋势。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

参考文献

[ 1 ] Dunn S. Hydrogen futures: Toward a sustainable energy system. Int J Hydrogen Energy 2002;27(3):235–64 链接1

[ 2 ] Graetz J. New approaches to hydrogen storage. Chem Soc Rev 2009;38(1):73–82 链接1

[ 3 ] Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today 2009;139(4):244–60 链接1

[ 4 ] Conte M, Prosini PP, Passerini S. Overview of energy/hydrogen storage: State-of-the-art of the technologies and prospects for nanomaterials. Mater Sci Eng B 2004;108(1–2):2–8 链接1

[ 5 ] Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ Sci 2015;8(3):731–59 链接1

[ 6 ] Acar C, Dincer I, Naterer GF. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 2016;40(11):1449–73 链接1

[ 7 ] Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S. Photocatalytic water splitting—The untamed dream: A review of recent advances. Molecules 2016;21(7):900 链接1

[ 8 ] Chen S, Thind SS, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochem Commun 2016;63:10–7 链接1

[ 9 ] Chen J, Zhao D, Diao Z, Wang M, Shen S. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: A case study of (Co, Ni)Fe2O4 modification. Sci Bull 2016;61(4):292–301 链接1

[10] Liu Y, Tian L, Tan X, Li X, Chen X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci Bull 2017;62(6):431–41 链接1

[11] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38(1):253–78 链接1

[12] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater 2012;24(2):229–51 链接1

[13] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014;43(22):7520–35 链接1

[14] Zhang P, Zhang J, Gong J. Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 2014;43(13):4395–422 链接1

[15] Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001;414(6864):625–7 链接1

[16] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, et al.Photocatalyst releasing hydrogen from water. Nature 2006;440(7082):295 链接1

[17] Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, et al.Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 2007;111(2):1042–8 链接1

[18] Maeda K, Lu D, Domen K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chemistry 2013;19(16):4986–91 链接1

[19] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, et al.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015;347(6225):970–4 链接1

[20] Meng A, Zhang J, Xu D, Cheng B, Yu J. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on (101) and (001) facets. Appl Catal B 2016;198:286–94 链接1

[21] Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, et al.A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 2015;54(10):2955–9 链接1

[22] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al.Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 2011;133(28):10878–84 链接1

[23] Frame FA, Osterloh FE. CdSe-MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J Phys Chem C 2010;114(23):10628–33 链接1

[24] Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 2005;117(23):3631–4 链接1

[25] Yoneyama H. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit Rev Solid State Mater Sci 1993;18(1):69–111 链接1

[26] Kazunari D, Kondo JN, Michikazu H, Tsuyoshi T. Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 2000;73(6):1307–31 链接1

[27] Kudo A. Development of photocatalyst materials for water splitting. Int J Hydrogen Energy 2006;31(2):197–202 链接1

[28] Shangguan W. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Technol Adv Mater 2007;8(1–2):76–81 链接1

[29] Kudo A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrogen Energy 2007;32(14):2673–8 链接1

[30] Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 2007;111(22):7851–61 链接1

[31] Osterloh FE. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 2013;42(6):2294–320 链接1

[32] Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015;27(13):2150–76 链接1

[33] Zhang G, Liu G, Wang L, Irvine JTS. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 2016;45(21):5951–84 链接1

[34] Xu Y, Kraft M, Xu R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev 2016;45(11):3039–52 链接1

[35] Yuan L, Han C, Yang MQ, Xu YJ. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. Int Rev Phys Chem 2016;35(1):1–36 链接1

[36] Gr?tzel M. Photoelectrochemical cells. Nature 2001;414(6861):338–44 链接1

[37] Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, et al.Solar water splitting cells. Chem Rev 2010;110(11):6446–73 链接1

[38] Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013;6(2):347–70 链接1

[39] Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, et al.Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 2006;31(14):1999–2017 链接1

[40] Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J, et al.Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 2013;52(43):11252–6 链接1

[41] Nurlaela E, Ziani A, Takanabe K. Tantalum nitride for photocatalytic water splitting: Concept and applications. Mater Renew Sust Energy 2016;5(4):18 链接1

[42] Moriya Y, Takata T, Domen K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 2013;257(13–14):1957–69 链接1

[43] Go H, Akio I, Tsuyoshi T, Kondo JN, Michikazu H, Kazunari D. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm). Chem Lett 2002;31(7):736–7 链接1

[44] Nurlaela E, Ould-Chikh S, Llorens I, Hazemann JL, Takanabe K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem Mater 2015;27(16):5685–94 链接1

[45] Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 2015;54(10):3047–51 链接1

[46] Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, et al.Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 2002;106(29):6750–3 链接1

[47] Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chem Commun 2002;(16):1698–9 链接1

[48] Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 2003;78(1–4):555–60 链接1

[49] Takata T, Pan C, Domen K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 2016;3(1):31–7 链接1

[50] Matoba T, Maeda K, Domen K. Activation of BaTaO2N photocatalyst for enhanced non-sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO3. Chemistry 2011;17(52):14731–5 链接1

[51] Xu J, Pan C, Takata T, Domen K. Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 2015;51(33):7191–4 链接1

[52] Maeda K. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys Chem Chem Phys 2013;15(26):10537–48 链接1

[53] He Y, Thorne JE, Wu CH, Ma P, Du C, Dong Q, et al.What limits the performance of Ta3N5 for solar water splitting? Chem 2016;1(4):640–55 链接1

[54] Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, et al.Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 2003;107(8):1798–803 链接1

[55] Balaz S, Porter SH, Woodward PM, Brillson LJ. Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem Mater 2013;25(16):3337–43 链接1

[56] Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 2011;4(10):4138–47 链接1

[57] Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, et al.Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 2011;519(7):2087–92 链接1

[58] Feng X, Latempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 2010;10(3):948–52 链接1

[59] Ritala M, Kalsi P, Riihel? D, Kukli K, Leskel? M, Jokinen J. Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition. Chem Mater 1999;11(7):1712–8 链接1

[60] Fang Z, Aspinall HC, Odedra R, Potter RJ. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine. J Cryst Growth 2011;331(1):33–9 链接1

[61] Zhen C, Wang L, Liu G, Lu GQ, Cheng HM. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem Commun 2013;49(29):3019–21 链接1

[62] Pinaud BA, Vailionis A, Jaramillo TF. Controlling the structural and optical properties of Ta3N5 films through nitridation temperature and the nature of the Ta metal. Chem Mater 2014;26(4):1576–82 链接1

[63] Park JC, Pee JH, Park HH. Effect of presynthesis of Ta precursor on the formation of Ta nitrides. J Mater Res 2010;25(5):835–41 链接1

[64] Kishida K, Watanabe T. Improvement of photocatalytic activity of tantalum nitride by ammonothermal treatment at high pressure. J Solid State Chem 2012;191:15–8 链接1

[65] Lee Y, Nukumizu K, Watanabe T, Takata T, Hara M, Yoshimura M, et al.Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chem Lett 2006;35(4):352–3 链接1

[66] Brauer G, Weidlein JR. Synthesis and properties of red tantalum nitride Ta3N5. Angew Chem 1965;77(5):218–9. German 链接1

[67] Murakami N, Prieto Mahaney OO, Abe R, Torimoto T, Ohtani B. Double-beam photoacoustic spectroscopic studies on transient absorption of titanium (IV) oxide photocatalyst powders. J Phys Chem C 2007;111(32):11927–35 链接1

[68] Abe R, Takami H, Murakami N, Ohtani B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Soc Chem 2008;130(25):7780–1 链接1

[69] Takata T, Lu D, Domen K. Synthesis of structurally defined Ta3N5 particles by flux-assisted nitridation. Cryst Growth Des 2011;11(1):33–8 链接1

[70] Xiao M, Li Y, Lu Y, Ye Z. Synthesis of ZrO2: Fe nanostructures with visible-light driven H2 evolution activity. J Mater Chem A 2015;3(6):2701–6 链接1

[71] Li Y, Li F, Li X, Song H, Lou Z, Ye Z, et al.Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. Nano Energy 2016;19:437–45 链接1

[72] Shen S, Zhao L, Zhou Z, Guo L. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 2008;112(41):16148–55 链接1

[73] Hong J, Xia X, Wang Y, Xu R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 2012;22(30):15006–12 链接1

[74] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 2010;132(34):11856–7 链接1

[75] Li Y, Ma G, Peng S, Lu G, Li S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 2008;254(21):6831–6 链接1

[76] Kado Y, Hahn R, Lee CY, Schmuki P. Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochem Commun 2012;17:67–70 链接1

[77] Feng J, Cao D, Wang Z, Luo W, Wang J, Li Z, et al.Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting. Chemistry 2014;20(49):16384–90 链接1

[78] Ma SSK, Hisatomi T, Maeda K, Moriya Y, Domen K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J Am Chem Soc 2012;134(49):19993–6 链接1

[79] Xie Y, Wang Y, Chen Z, Xu X. Role of oxygen defects on the photocatalytic properties of Mg-doped mesoporous Ta3N5. ChemSusChem 2016;9(12):1403–12 链接1

[80] Kado Y, Lee CY, Lee K, Müller J, Moll M, Spiecker E, et al.Enhanced water splitting activity of M-doped Ta3N5 (M= Na, K, Rb, Cs). Chem Commun 2012;48(69):8685–7 链接1

[81] Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, et al.Mg-Zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water splitting. J Am Chem Soc 2015;137(40):12780–3 链接1

[82] Pan C, Takata T, Kumamoto K, Khine Ma SS, Ueda K, Minegishi T, et al.Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. J Mater Chem A 2016;4(12):4544–52 链接1

[83] Xiong J, Han C, Li Z, Dou S. Effects of nanostructure on clean energy: Big solutions gained from small features. Sci Bull 2015;60(24):2083–90 链接1

[84] Hisatomi T, Otani M, Nakajima K, Teramura K, Kako Y, Lu D, et al.Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem Mater 2010;22(13):3854–61 链接1

[85] Maeda K, Nishimura N, Domen K. A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Appl Catal A Gen 2009;370(1–2):88–92 链接1

[86] Yuliati L, Yang JH, Wang X, Maeda K, Takata T, Antonietti M, et al.Highly active tantalum (V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J Mater Chem 2010;20(21):4295–8 链接1

[87] Tsang MY, Pridmore NE, Gillie LJ, Chou YH, Brydson R, Douthwaite RE. Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. Adv Mater 2012;24(25):3406–9 链接1

[88] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58(23):2486–9 链接1

[89] Chen JIL, von Freymann G, Choi SY, Kitaev V, Ozin GA. Amplified Photochemistry with slow photons. Adv Mater 2006;18(14):1915–9 链接1

[90] Wang Z, Hou J, Yang C, Jiao S, Huang K, Zhu H. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ Sci 2013;6(7):2134–44 链接1

[91] Fukasawa Y, Takanabe K, Shimojima A, Antonietti M, Domen K, Okubo T. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem Asian J 2011;6(1):103–9 链接1

[92] Fu J, Skrabalak SE. Aerosol synthesis of shape-controlled template particles: A route to Ta3N5 nanoplates and octahedra as photocatalysts. J Mater Chem A 2016;4(21):8451–7 链接1

[93] Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn 2008;81(8):927–37 链接1

[94] Maeda K, Higashi M, Lu D, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 2010;132(16):5858–68 链接1

[95] Ma SSK, Maeda K, Domen K. Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: Influence of preparation conditions on activity. Catal Sci Technol 2012;2(4):818–23 链接1

[96] Yuliati L, Maeda K, Takata T, Domen K. Modification of tantalum (V) nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. In: Proceedings of the 2012 International Conference on Enabling Science and Nanotechnology ; 2012 Jan 5–7; Johor Bahru, Malaysia. Piscataway: IEEE; 2012. p. 1–2 链接1

[97] Chen S, Qi Y, Ding Q, Li Z, Cui J, Zhang F, et al.Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. J Catal 2016;339:77–83 链接1

[98] Qi Y, Chen S, Li M, Ding Q, Li Z, Cui J, et al.Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem Sci 2017;8(1):437–43 链接1

[99] Li R, Han H, Zhang F, Wang D, Li C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 2014;7(4):1369–76 链接1

[100] Ma Y, Chong R, Zhang F, Xu Q, Shen S, Han H, et al.Synergetic effect of dual cocatalysts in photocatalytic H2 production on Pd-IrOx/TiO2: A new insight into dual cocatalyst location. Phys Chem Chem Phys 2014;16(33):17734–42 链接1

[101] Jiang Q, Li L, Bi J, Liang S, Liu M. Design and synthesis of TiO2 hollow spheres with spatially separated dual cocatalysts for efficient photocatalytic hydrogen production. Nanomaterials 2017;7(2):24 链接1

[102] Huang L, Wang X, Yang J, Liu G, Han J, Li C. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C 2013;117(22):11584–91 链接1

[103] Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014;8(7):7078–87 链接1

[104] Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, et al.Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat Commun 2015;6:8647 链接1

[105] Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 2013;46(8):1900–9 链接1

[106] Maeda K, Abe R, Domen K. Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J Phys Chem C 2011;115(7):3057–64 链接1

[107] Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew Chem Int Ed 2006;118(46):7970–3 链接1

[108] Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting. J Phys Chem C 2007;111(20):7554–60 链接1

[109] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A, Lu D, et al.Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chemistry 2010;16(26):7750–9 链接1

[110] Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, et al.Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 2009;113(23):10151–7 链接1

[111] Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J Electroanal Chem 2005;579(1):83–8 链接1

[112] Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM, Dysart JL, Mallouk TE. A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2011;2(5):402–6 链接1

[113] Nakagawa T, Bjorge NS, Murray RW. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 2009;131(43):15578–9 链接1

[114] Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 2010;44(19):7641–6 链接1

[115] Bessekhouad Y, Robert D, Weber JV. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 2005;101(3–4):315–21 链接1

[116] Daskalaki VM, Antoniadou M, Li Puma G, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol 2010;44(19):7200–5 链接1

[117] Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 2014;4(10):3724–9 链接1

[118] Liu X, Zhao L, Domen K, Takanabe K. Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Mater Res Bull 2014;49:58–65 链接1

[119] Luo Y, Liu X, Tang X, Luo Y, Zeng Q, Deng X, et al.Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J Mater Chem A 2014;2(36):14927–39 链接1

[120] Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 2008;33(21):5975–80 链接1

[121] Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M, et al.Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. RSC Advances 2015;5(68):54998–5005 链接1

[122] Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K. Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem Lett 2008;37(2):138–9 链接1

[123] Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, et al.Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010;26(12):9161–5 链接1

相关研究