期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.011

激光增材制造的热力学和动力学多尺度理解

a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
b Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

录用日期: 2017-06-14 发布日期: 2017-10-31

下一篇 上一篇

摘要

选择性激光熔化(SLM)增材制造(AM)技术已成为精密制造高性能复杂形状金属零件的重要选择。SLM AM 工艺涉及复杂的物理化学现象、热力学特性以及高能激光束融化散粉颗粒时产生的相变。本文提出了针对金属材料SLM 工艺的多尺度建模和协调控制,其中,金属材料包括铝(Al)基合金(AlSi10Mg)、镍(Ni)基超合金(Inconel 718)及陶瓷颗粒增强的铝基和镍基复合材料。从微观尺度研究氮化铝(AlN)颗粒在SLM 处理后的铝基纳米复合材料中的迁移和分布机制以及SLM处理后的碳化钨(WC)/Inconel 718 复合材料中增强体和基体之间梯度界面的原位形成。从中尺度研究AlSi10Mg 和Inconel 718 合金粉末的激光吸收和熔化/ 致密化特性。最后,从宏观尺度提出了逐行局部激光扫描过程中的应力发展和SLM 处理后的复合材料变形的参数依赖控制方法。多尺度数值模拟和实验验证方法有利于监测SLM AM 过程中复杂的粉末激光作用、传热传质特性以及微观结构和力学性能的发展。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Lu BH, Li DC, Tian XY. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9 链接1

[ 2 ] Derby B. Additive manufacture of ceramics components by inkjet printing. Engineering 2015;1(1):113–23 链接1

[ 3 ] Clausen A, Aage N, Sigmund O. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2016;2(2):250–7 链接1

[ 4 ] Liu Y, Li A, Cheng X, Zhang SQ, Wang HM. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel. Mater Sci Eng A 2016;666:27–33 链接1

[ 5 ] Haberland C, Elahinia M, Walker JM, Meier H, Frenzel J. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 2014;23(10):104002 链接1

[ 6 ] Huang WD, Lin X. Research progress in laser solid forming of high performance metallic components at the State Key Laboratory of Solidification Processing of China. 3D Print Addit Manuf 2014;1(3):156–65 链接1

[ 7 ] Wang D, Mai SZ, Xiao DM, Yang YQ. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. Int J Adv Manuf Technol 2016;86(1–4):781–92 链接1

[ 8 ] Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev 2012;57(3):133–64 链接1

[ 9 ] King W, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol 2015;31(8):957–68 链接1

[10] Qiu CL, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 2015;96:72–9 链接1

[11] Dai DH, Gu DD. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tool Manuf 2016;100:14–24: 链接1

[12] Gussone J, Garces G, Haubrich J, Stark A, Hagedorn YC, Schell N,et al.Microstructure stability of γ-TiAl produced by selective laser melting. Scripta Mater 2017;130:110–3 链接1

[13] Kenel C, Grolimund D, Fife JL, Samson VA, Van Petegem S, Van Swygenhoven H, et al.Combined in situ synchrotron micro X-ray diffraction and high-speed imaging on rapidly heated and solidified Ti-48Al under additive manufacturing conditions. Scripta Mater 2016;114:117–20 链接1

[14] Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterization. Mater Sci Technol 2015;31(8):917–23 链接1

[15] Matthews MJ, Guss G, Khairallah SA, Rubenchik AM, Depond PJ, King WE. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42 链接1

[16] Zhou X, Wang DZ, Liu XH, Zhang DD, Qu SL, Ma J, et al.3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater 2015;98:1–16 链接1

[17] Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Product Eng 2010;4(1):35–45 链接1

[18] Yan WT, Ge WJ, Smith J, Lin S, Kafka OL, Lin F,et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12 链接1

[19] Gu DD, Yuan PP. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction. J Appl Phys 2015;118(23):233109 链接1

[20] Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45 链接1

[21] Yu GQ, Gu DD, Dai DH, Xia MJ, Ma CL, Chang K. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A 2016;122:891 链接1

[22] Dai DH, Gu DD. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl Surf Sci 2015;355:310–9 链接1

[23] Gu DD, Shen YF. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J Alloys Compd 2007;432(1–2):163–6 链接1

[24] Zhao XM, Chen J, Lin X, Huang WD. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A 2008;478(1–2):119–24 链接1

[25] Liang YJ, Li A, Cheng X, Pang XT, Wang HM. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys. J Alloys Compd 2016;688(Part A):133–42 链接1

[26] Gu DD. Materials creation adds new dimensions to 3D printing. Sci Bull 2016;61(22):1718–22 链接1

[27] Han QQ, Setchi R, Evans SL. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 2016;297:183–92 链接1

[28] Shi QM, Gu DD, Xia MJ, Cao SN, Rong T. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol 2016;84:9–22 链接1

相关研究