期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.013

关于3D打印技术在医学模具以及再生组织和器官方面的应用综述

a H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
b School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
c Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA

录用日期: 2017-08-29 发布日期: 2017-10-31

下一篇 上一篇

摘要

医学模型或模具已广泛应用于医学培训和医患互动领域,同时也日益应用于手术规划、医学计算模型、算法核实和验证以及医疗器械的开发等方面。这种新应用需要高保真度、患者特异性及模拟组织结构的医学模具,其不仅能够模拟人体器官的几何结构,而且还具有器官的功能。随着三维(3D)打印和3D 生物打印技术的快速发展,许多研究人员已经开始使用增材制造技术来生产具有多种功能的医学模具。本文综述了3D 打印和3D 生物打印技术在制作功能性医学模具和生物结构方面的应用。特别讨论了3D 打印功能性医学模具(即组织模拟医学模具、放射性医学模具和生理医学模具)及被用于再生组织和器官的3D 生物打印模具的制备(即混合模式支架材料、可转换支架和集成传感器)工艺、发展现状以及未来发展趋势。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Kianian B. Wohlers report 2017—3D printing and additive manufacturing state of the industry—Annual worldwide progress report. Fort Collins: Wohlers Associates, Inc.; 2017.

[ 2 ] Wu J, Li Y, Zhang Y. Use of intraoral scanning and 3-dimensional printing in the fabrication of a removable partial denture for a patient with limited mouth opening. J Am Dent Assoc 2017;148(5):338–41 链接1

[ 3 ] Banks J. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 2013;4(6):22–6 链接1

[ 4 ] Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—Ready for prime time? World Neurosurg 2013;80(3–4):233–5 链接1

[ 5 ] Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014;86(7):3240–53 链接1

[ 6 ] National Institutes of Health. NIH 3D print exchange [Internet]. [cited 2014 Jul 9]. Available from: http://3dprint.nih.gov.

[ 7 ] Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 2013;368(21):2043–5 链接1

[ 8 ] Peltola SM, Melchels FP, Grijpma DW, Kellom?ki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40(4):268–80 链接1

[ 9 ] Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21(4):157–61 链接1

[10] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85 链接1

[11] Kido T, Kurata A, Higashino H, Sugawara Y, Okayama H, Higaki J, et al.Cardiac imaging using 256-detector row four-dimensional CT: Preliminary clinical report. Radiat Med 2007;25(1):38–44 链接1

[12] Meaney JF, Goyen M. Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 2007;17(Suppl 2):B2–6.

[13] Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al.3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg 2010;5(4):335–41 链接1

[14] Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, et al.Medical 3D printing for the radiologist. Radiographics 2015;35(7):1965–88 链接1

[15] Doi K. Diagnostic imaging over the last 50 years: Research and development in medical imaging science and technology. Phys Med Biol 2006;51(13):R5–27 链接1

[16] Kirchgeorg MA, Prokop M. Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 1998;28(1):39–54 链接1

[17] Mahesh M. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 2002;22(4):949–62 链接1

[18] Cook JR, Bouchard RR, Emelianov SY. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed Opt Express 2011;2(11):3193–206 链接1

[19] Madsen EL, Kelly-Fry E, Frank GR. Anthropomorphic phantoms for assessing systems used in ultrasound imaging of the compressed breast. Ultrasound Med Biol 1988;14(Suppl 1):183–201 链接1

[20] Madsen EL, Zagzebski JA, Frank GR. An anthropomorphic ultrasound breast phantom containing intermediate-sized scatters. Ultrasound Med Biol 1982;8(4):381–92 链接1

[21] Blechinger JC, Madsen EL, Frank GR. Tissue-mimicking gelatin-agar gels for use in magnetic resonance imaging phantoms. Med Phys 1988;15(4):629–36 链接1

[22] Fong PM, Keil DC, Does MD, Gore JC. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 2001;46(12):3105–13 链接1

[23] Madsen EL, Fullerton GD. Prospective tissue-mimicking materials for use in NMR imaging phantoms. Magn Reson Imaging 1982;1(3):135–41 链接1

[24] Surry KJ, Austin HJ, Fenster A, Peters TM. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys Med Biol 2004;49(24):5529–46 链接1

[25] Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr. Thermoacoustic CT with radio waves: A medical imaging paradigm. Radiology 1999;211(1):275–8 链接1

[26] ]D’Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR. Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys 2001;28(4):688–700 链接1

[27] ]Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol 2005;50(18):4245–58 链接1

[28] Wang RK, Ma Z, Kirkpatrick SJ. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl Phys Lett 2006;89(14):144103 链接1

[29] Sun MK, Shieh J, Lo CW, Chen CS, Chen BT, Huang CW, et al.Reusable tissue-mimicking hydrogel phantoms for focused ultrasound ablation. Ultrason Sonochem 2015;23:399–405 链接1

[30] Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: A 3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159–61 链接1

[31] Lipson H. New world of 3D printing offers “completely new ways of thinking”: Q&A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse 2013;4(6):12–4 链接1

[32] Hoy MB. 3D printing: Making things at the library. Med Ref Serv Q 2013;32(1):94–9 链接1

[33] Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, et al.Challenges and limitations of patient-specific vascular phantom fabrication using 3D PolyJet printing. Proc SPIE Int Soc Opt Eng 2014;9038:90380M.

[34] 3D printing bone on a budget [Internet]. New York: Shapeways, Inc.; c2008–2017 [updated 2011 Sep 14; cited 2017 Jun 6]. Available from: https://www.shapeways.com/blog/archives/995-3D-Printing-Bone-on-a-budget!.html.

[35] Ventola CL. Medical applications for 3D printing: Current and projected uses. P T 2014;39(10):704–11.

[36] Cloonan AJ, Shahmirzadi D, Li RX, Doyle BJ, Konofagou EE, McGloughlin TM. 3D-printed tissue-mimicking phantoms for medical imaging and computational validation applications. 3D Print Addit Manuf 2014;1(1):14–23 链接1

[37] Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in vitro studies and device testing. J Cardiovasc Magn Reson 2013;15:2 链接1

[38] Leng S, Chen B, Vrieze T, Kuhlmann J, Yu L, Alexander A, et al.. Construction of realistic phantoms from patient images and a commercial three-dimensional printer. J Med Imaging (Bellingham) 2016;3(3):033501 链接1

[39] Wang K, Wu C, Qian Z, Zhang C, Wang B, Vannan MA. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit Manuf 2016;12(Part A):31–7.

[40] Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model. Ann Biomed Eng 1996;24(5):573–82 链接1

[41] Wang K, Zhao Y, Chang YH, Qian Z, Zhang C, Wang B, et al.Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater Des 2016;90:704–12 链接1

[42] Center for Metamaterials and Integrated Plasmonics. Metamaterials [Internet]. [cited 2017 Jun 6]. Available from: http://metamaterials.duke.edu/research/metamaterials.

[43] Lee JH, Singer JP, Thomas EL. Micro-/nanostructured mechanical metamaterials. Adv Mater 2012;24(36):4782–810 链接1

[44] Qian Z, Wang K, Liu S, Zhou X, Rajagopal V, Meduri C, et al.Quantitative prediction of paravalvular leak in transcatheter aortic valve replacement based on tissue-mimicking 3D printing. JACC Cardiovasc Imag 2017;10(7):719–31 链接1

[45] Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006;367(9518):1241–6 链接1

[46] Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 2007;28(34):5068–73 链接1

[47] Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8(6):457–70 链接1

[48] Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2015;56:165–73 链接1

[49] Haaparanta AM, J?rvinen E, Cengiz IF, Ell? V, Kokkonen HT, Kiviranta I, et al.Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 2014;25(4):1129–36 链接1

[50] Campbell JJ, Husmann A, Hume RD, Watson CJ, Cameron RE. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 2017;114:34–43 链接1

[51] Rossi E, Gerges I, Tocchio A, Tamplenizza M, Aprile P, Recordati C, et al.Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications. Biomaterials 2016;104:65–77 链接1

[52] Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2014;102(6):1304–15 链接1

[53] Guarino V, Ambrosio L. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds. Acta Biomater 2008;4(6):1778–87 链接1

[54] Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008;29(34):4532–9 链接1

[55] Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, et al.Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater 2015;24:117–26 链接1

[56] Hribar KC, Soman P, Warner J, Chung P, Chen S. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 2014;14(2):268–75 链接1

[57] Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet 2011;377(9772):1175–82 链接1

[58] Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehm?ller M, et al.Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004;364(9436):766–70 链接1

[59] Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, et al.Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014;6(2):024105 链接1

[60] Cheng YL, Chen YW, Wang K, Shie MY. Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography. J Mater Chem B 2016;4(38):6307–15 链接1

[61] Yeo M, Lee JS, Chun W, Kim GH. An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core-sheath structures for tissue engineering. Biomacromolecules 2016;17(4):1365–75 链接1

[62] Ouyang L, Highley CB, Sun W, Burdick JA. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 2017;29(8):1604983 链接1

[63] Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al.High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 2010;6(7):2494–500 链接1

[64] Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond) 2010;5(3):507–15 链接1

[65] Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al.Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010;31(28):7250–6 链接1

[66] Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al.Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 2013;8(3):e57741 链接1

[67] Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2013;34(1):130–9 链接1

[68] Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. J Biomed Mater Res A 2009;91(4):1202–9 链接1

[69] Tao H, Marelli B, Yang M, An B, Onses MS, Rogers JA, et al.Inkjet printing of regenerated silk fibroin: From printable forms to printable functions. Adv Mater 2015;27(29):4273–9 链接1

[70] Tse C, Whiteley R, Yu T, Stringer J, MacNeil S, Haycock JW, et al.Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 2016;8(1):015017 链接1

[71] Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials—Approaches towards 3D tissue printing. J Funct Biomater 2011;2(3):119–54 链接1

[72] Liu W, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, et al.Rapid continuous multimaterial extrusion bioprinting. Adv Mater 2017;29(3):1604630 链接1

[73] Melchels FPW, Dhert WJA, Hutmacher DW, Mald J. Development and characterisation of a new bioink for additive tissue manufacturing. J Mater Chem B 2014;2(16):2282–9 链接1

[74] Akkineni AR, Ahlfeld T, Lode A, Gelinsky M. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Biofabrication 2016;8(4):045001 链接1

[75] Ho CM, Mishra A, Lin PT, Ng SH, Yeong WY, Kim YJ, et al.3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromol Biosci 2017;17(4):1600250 链接1

[76] Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: Tissue spheroids as building blocks. Biomaterials 2009;30(12):2164–74 链接1

[77] Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, et al.Scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 2015;10(9):e0136681 链接1

[78] Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26(19):3124–30 链接1

[79] Dávila JL, Freitas MS, Infor?atti Neto P, Silveira ZC, Silva JVL, d’ávila MA. Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J Appl Polym Sci 2016;133(15):43031 链接1

[80] Yeo M, Jung WK, Kim G. Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/β-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 2012;22(8):3568–77 链接1

[81] Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, et al.Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 2008;42(3):554–64 链接1

[82] Yu D, Li Q, Mu X, Chang T, Xiong Z. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Int J Oral Maxillofac Surg 2008;37(10):929–34 链接1

[83] Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, et al.Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng C 2017;74:525–35 链接1

[84] Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 2011;34(4):505–13 链接1

[85] Gon?alves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, et al.Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater 2016;104(6):1210–9 链接1

[86] Hortigüela MJ, Gutiérrez MC, Aranaz I, Jobbágy M, Abarrategi A, Moreno-Vicente C, et al.Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds. J Mater Chem 2008;18(48):5933–40 链接1

[87] Wiria FE, Leong KF, Chua CK, Liu Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 2007;3(1):1–12 链接1

[88] Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, et al.Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 2013;8:4197–213.

[89] Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, et al.Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 2013;3:2655 链接1

[90] Shor L, Gü?eri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 2007;28(35):5291–7 链接1

[91] Xiao X, Liu R, Huang Q, Ding X. Preparation and characterization of hydroxyapatite/polycaprolactone-chitosan composites. J Mater Sci Mater Med 2009;20(12):2375–83 链接1

[92] Endres M, Hutmacher DW, Salgado AJ, Kaps C, Ringe J, Reis RL, et al.Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng 2003;9(4):689–702 链接1

[93] Rizzi SC, Heath DJ, Coombes AG, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 2001;55(4):475–86 链接1

[94] Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, et al.Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater 2016;17(1):136–48 链接1

[95] Senatov FS, Niaza KV, Stepashkin AA, Kaloshkin SD. Low-cycle fatigue behavior of 3D-printed PLA-based porous scaffolds. Composites, Part B 2016;97:193–200 链接1

[96] Russias J, Saiz E, Nalla RK, Gryn K, Ritchie RO, Tomsia AP. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Mater Sci Eng C Biomim Supramol Syst 2006;26(8):1289–95 链接1

[97] Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 2016;57:139–48 链接1

[98] Kutikov AB, Gurijala A, Song J. Rapid prototyping amphiphilic polymer/hydroxyapatite composite scaffolds with hydration-induced self-fixation behavior. Tissue Eng Part C Methods 2015;21(3):229–41 链接1

[99] Kutikov AB, Song J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 2013;9(9):8354–64 链接1

[100] Zheng X, Zhou S, Li X, Weng J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006;27(24):4288–95 链接1

[101] Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomater 2016;30:319–33 链接1

[102] Yao J, Radin S, S Leboy P, Ducheyne P. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials 2005;26(14):1935–43 链接1

[103] Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 2013;9(3):5521–30 链接1

[104] Kim Y, Kim G. Collagen/alginate scaffolds comprising core (PCL)–shell (collagen/alginate) struts for hard tissue regeneration: Fabrication, characterisation, and cellular activities. J Mater Chem B 2013;1(25):3185–94 链接1

[105] Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT. Laser sintered magnesium-calcium pilicate/poly-ε-caprolactone scaffold for bone tissue engineering. Materials (Basel) 2017;10(1):65 链接1

[106] Schantz JT, Brandwood A, Hutmacher DW, Khor HL, Bittner K. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med 2005;16(9):807–19 链接1

[107] Charles-Harris M, Koch MA, Navarro M, Lacroix D, Engel E, Planell JAA. A PLA/calcium phosphate degradable composite material for bone tissue engineering: An in vitro study. J Mater Sci Mater Med 2008;19(4):1503–13 链接1

[108] Wong HM, Chu PK, Leung FKL, Cheung KMC, Luk KDK, Yeung KWK. Engineered polycaprolactone—Magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog Nat Sci Mater Int 2014;24(5):561–7 链接1

[109] Kim YB, Kim GH. PCL/alginate composite scaffolds for hard tissue engineering: Fabrication, characterization, and cellular activities. ACS Comb Sci 2015;17(2):87–99 链接1

[110] Lee H, Ahn S, Bonassar LJ, Kim G. Cell(MC3T3-E1)-printed poly(ε-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun 2013;34(2):142–9 链接1

[111] Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, et al.3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2014;2(43):7583–95 链接1

[112] Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 2012;23(7):1749–61 链接1

[113] Jin G, Kim G. The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. J Mater Chem B 2013;1(10):1439–52 链接1

[114] Mackle JN, Blond DJP, Mooney E, McDonnell C, Blau WJ, Shaw G, et al.In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering. Macromol Biosci 2011;11(9):1272–82 链接1

[115] Saeed K, Park SY, Lee HJ, Baek JB, Huh WS. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 2006;47(23):8019–25 链接1

[116] Anaraki NA, Rad LR, Irani M, Haririan I. Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 2015;132(3):41286.

[117] Yang C, Chen S, Wang J, Zhu T, Xu G, Chen Z, et al.A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Appl Surf Sci 2016;362:163–8 链接1

[118] Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res 2002;59(3):499–506 链接1

[119] Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 2012;90(1):181–8 链接1

[120] Luo Y, Wu C, Lode A, Gelinsky M. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 2013;5(1):015005 链接1

[121] Luo Y, Lode A, Sonntag F, Nies B, Gelinsky M. Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. J Mater Chem B 2013;1(33):4088–98 链接1

[122] Wang K, Chang YH, Wang B, Zhang C. Printed electronics: Principles, materials, processes, and applications. In: Geng H, editor Semiconductor manufacturing handbook. 2nd ed. New York: McGraw-Hill Education; 20 17. p. 245–316.

相关研究