期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.014

双向4D打印——对3D打印形状记忆材料可逆性的回顾

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

录用日期: 2017-08-29 发布日期: 2017-10-31

下一篇 上一篇

摘要

增材制造技术的快速发展和形状记忆材料的进步推动了四维(4D)打印的发展。由于一定程度上的外部刺激,人机交互作用、传感器和电池的需求将被消除,通过使用增材制造技术,可以生产出更复杂的设备和零部件。随着目前对形状记忆机制的理解和对增材制造技术的改进设计,4D 打印的可逆性已经被证明是可行的。传统的单向4D 打印需要在编程(或定型)阶段进行人机交互,但是可逆的4D 打印或双向4D 打印将完全消除对人为干预的需求,因为编程阶段被另一种外界刺激所取代。这使得可逆4D 打印部件完全依赖外部刺激。零部件在每次回收后都可能被重复利用,甚至在某个周期中可以持续使用——这是一个具有工业运用吸引力的方面。本文综述了影响4D 打印的形状记忆材料的机制,目前在合金和聚合物上的4D 打印研究结果,以及它们各自存在的一些局限性。对形状记忆材料的可逆性和利用三维(3D)打印技术制作的可行性进行了总结和分析。在对可逆4D 打印技术相关内容的介绍中,本文也强调了3D 打印技术的方法、相关驱动的机制以及实现可逆性的策略。最后,提出了可逆4D 打印技术未来的研究方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Wohlers T, Gornet T. History of additive manufacturing. In: Wohlers T, editor Wohlers report 2014: Additive manufacturing and 3D printing state of the industry. Fort Collins: Wohlers Associates Inc., USA; 2014. p. 1–34.

[ 2 ] Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 5th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017 链接1

[ 3 ] Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang SF, An J, et al.3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyping 2015;10(3):103–22 链接1

[ 4 ] ASTM International. ASTM F2792–2012a Standard terminology for additive manufacturing technologies. West Conshohocken: ASTM International; 2012.

[ 5 ] Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyping 2016;11(4):249–62 链接1

[ 6 ] Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: A literature review. Int J Adv Manuf Technol 2013;67(5–8):1191–203 链接1

[ 7 ] Humbeeck JV. Non-medical applications of shape memory alloys. Mater Sci Eng 1999;273–275:134–48 链接1

[ 8 ] Mantovani D. Shape memory alloys: Properties and biomedical applications. JOM 2000;52(10):36–44 链接1

[ 9 ] Meng H, Li GQ. A review of stimuli-responsive shape memory polymer composites. Polymer 2013;54(9):2199–221 链接1

[10] Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, et al.Shape memory polymers with high and low temperature resistant properties. Sci Rep 2015;5:14137 链接1

[11] Leng JS, Lu HB, Liu YJ, Huang WM, Du SY. Shape-memory polymers—A class of novel smart materials. MRS Bull 2009;34(11):848–55 链接1

[12] Osada Y, Matsuda A. Shape memory in hydrogels. Nature 1995;376(6537):219 链接1

[13] Wei ZG, Sandstror?m R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems: Part I shape-memory materials. J Mater Sci 1998;33(15):3743–62 链接1

[14] Wei ZG, Sandstror?m R, Miyazaki S. Shape memory materials and hybrid composites for smart systems: Part II shape-memory hybrid composites. J Mater Sci 1998;33(15):3763–83 链接1

[15] Pei E. 4D printing: Dawn of an emerging technology cycle. Assembly Autom 2014;34(4):310–4 链接1

[16] Tibbits S. 4D printing: Multi-material shape change. Archit Des 2014;84(1):116–21 链接1

[17] Pei E. 4D printing–Revolution or fad? Assembly Autom 2014;34(2):123–7 链接1

[18] Tibbits S. The emergence of “4D printing”. TED Talk; 2013 Feb.

[19] Li JJ, Rodgers WR, Xie T. Semi-crystalline two-way shape memory elastomer. Polymer 2011;52(23):5320–5 链接1

[20] Funakubo H. Shape memory alloys. New York: Gordon and Breach Science Publishers; 1987.

[21] O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 1998;83(6):3263–70 链接1

[22] Sun L, Huang WM. Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 2009;51(11–12):573–8 链接1

[23] Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113 链接1

[24] Lagoudas DC. Shape memory alloys: Modeling and engineering application. New York: Spinger; 2008.

[25] Fredmond M, Miyazaki S. Shape memory alloys. New York: Springer-Verlag Wien GmbH; 1996 链接1

[26] Buehler WJ, Gilfrich JV, Wiley RC. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Appl Phys 1963;34(5):1475–7 链接1

[27] Duerig TW, Pelton AR. Ti-Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW, editors Materials properties handbook: Titanium alloys. Russell: ASM International; 1994. p. 1035–48.

[28] Yoo YI, Lee JJ, Lee CH, Lim JH. An experimental study of the two-way shape memory effect in a NiTi tubular actuator. Smart Mater Struct 2010;19(12):125002 链接1

[29] Eftifeeva A, Panchenko E, Chumlyakov Y, Maier HJ. Investigation of the two-way shape memory effect in [001]-oriented Co35Ni35Al30 single crystals. AIP Conf Proc 2016;1698(1):03002 链接1

[30] Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C. Stimulus-responsive shape memory materials: A review. Mater Des 2012;33:577–640 链接1

[31] Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1968;1(1):105–8 链接1

[32] Liu Y. Some factors affecting the transformation hysteresis in shape memory alloys. In: Chen HR, editor Shape memory alloys. New York: Nova Science Publishers, Inc.; 2010. p. 361–9.

[33] Dynalloy Inc. Technical characteristics of Flexinol actuator wires. Tustin: Dynalloy, Inc.; 2011.

[34] Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys. Earthq Eng Struct D 2000;29(5):945–68 链接1

[35] Paul DI, McGehee W, O’Handley RC, Richard M. Ferromagnetic shape memory alloys: A theoretical approach. J Appl Phys 2007;101(12):123917 链接1

[36] Planes A, Ma?osa L. Ferromagnetic shape-memory alloys. Mater Sci Forum 2006;512:145–52 链接1

[37] Chopra HD, Ji CH, Kokorin VV. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys Rev B 2000;61(22):R14913–5 链接1

[38] Tellinen J, Suorsa I, J??skel?inen A, Aaltio I, Ullakko K. Basic properties of magnetic shape memory actuators. In: Proceedings of 8th International Conference ACTUATOR 2002; 2002 Jun 10–12; Bremen, Germany; 2002. p. 566–9.

[39] Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv Funct Mater 2009;19(7):983–98 链接1

[40] Rapp B. Nitinol for stents. Mater Today 2004;7(5):13 链接1

[41] Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci 2012;57(5):911–46 链接1

[42] Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory alloys produced by selective laser melting. In: Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2012 Sep 19–21; Stone Mountain, GA, USA. West Conshohocken: ASTM International; 2012. p. 97–104.

[43] Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 2014;16(9):1140–6 链接1

[44] Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 4th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2014 链接1

[45] Khoo ZX, Ong C, Liu Y, Chua CK, Leong KF, Yang SF. Selective laser melting of nickel titanium shape memory alloy. In: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing; 2016 May 16–19; Singapore; 2016. p. 451–6.

[46] Shishkovsky I, Yadroitsev I, Smurov I. Direct selective laser melting of nitinol powder. Phys Procedia 2012;39:447–54 链接1

[47] Meier H, Haberland C, Frenzel J, Zarnetta R. Selective laser melting of NiTi shape memory components. In: Proceedings of the 4th International Conference on Advanced Research and Rapid Prototyping; 2009 Oct 6–10; Leiria, Portugal. London: CRC Press; 2009. p. 233–8 链接1

[48] Halani PR, Kaya I, Shin YC, Karaca HE. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater Sci Eng A 2013;559:836–43 链接1

[49] Haberland C, Elahinia M, Walker J, Meier H, Frenzel J. Additive manufacturing of shape memory devices and pseudoelastic components. In: Proceedings of ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2013 Sep 16–18; Snowbird, UT, USA. New York: ASME; 2013. p. V001T01A005 链接1

[50] Andani MT, Haberland C, Walker J, Elahinia M. An investigation of effective process parameters on phase transformation temperature of nitinol manufactured by selective laser melting. In: Proceedings of ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2014 Sep 8–10; Newport, RI, USA. New York: ASME; 2014. p. V001T01A026 链接1

[51] Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 2010;58(9):3444–58 链接1

[52] Saburi T. Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM, editors Shape memory materials. New York: Cambridge University Press; 1999. p. 49–96.

[53] Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting. In: Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping; 2011 Sep 28–Oct 1; Leiria, Portugal. London: CRC Press; 2011. p. 291–6 链接1

[54] Andani MT, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, et al.Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 2017;68:224–31 链接1

[55] Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, et al.Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf 2016;11:23–31 链接1

[56] Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 2007;13(4):196–203 链接1

[57] Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering. Appl Surf Sci 2007;254(4):1145–9 链接1

[58] Le B, McVary K, Colombo A. MP25-09 use of 3D printing to prototype a custom shape memory alloy penile prosthesis. J Urology 2017;197(4):e313 链接1

[59] Khademzadeh S, Parvin N, Bariani PF. Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures. Int J Precis Eng Manuf 2015;16(11):2333–8 链接1

[60] Donoso GR, Walczak M, Moore ER, Ramos-Grez JA. Towards direct metal laser fabrication of Cu-based shape memory alloys. Rapid Prototyping J 2017;23(2):329–36 链接1

[61] Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 2002;50(18):4643–57 链接1

[62] Dadbakhsh S, Speirs M, Kruth JP, Van Humbeeck J. Influence of SLM on shape memory and compression behavior of NiTi scaffolds. CIRP Ann—Manuf Technol 2015;64(1):209–12 链接1

[63] Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 2004;378(1–2):24–33 链接1

[64] Pelton AR, Huang GH, Moine P, Sinclair R. Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 2012;532:130–8 链接1

[65] Benafan O, Noebe RD, Padula II SA, Brown DW, Vogel S, Vaidyanathan R. T hermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 2014;56:99–118 链接1

[66] Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, et al.Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Mater 2015;91:318–29 链接1

[67] Gao Y, Casalena L, Bowers ML, Noebe RD, Mills MJ, Wang Y. An origin of functional fatigue of shape memory alloys. Acta Mater 2017;126:389–400 链接1

[68] Huang W, Toh W. Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 2000;19(17):1549–50 链接1

[69] Wang ZG, Zu XT, You LP, Feng XD, Zhang CF. Investigation on the two-way shape memory effect and alternating current electrothermal driving characteristics of TiNiCu shape memory alloy. J Mater Sci 2004;39(10):3391–5 链接1

[70] Leu CC, Vokoun D, Hu CT. Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall Mater Trans A 2002;33(1):17–23 链接1

[71] Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: A review. Precis Eng 2016;46:34–47 链接1

[72] Hornat CC, Yang Y, Urban MW. Quantitative predictions of shape-memory effects in polymers. Adva Mater 2017;29(7):1603334 链接1

[73] Liu Y, Genzer J, Dickey MD. “2D or not 2D”: Shape-programming polymer sheets. Prog Polym Sci 2016;52:79–106 链接1

[74] Sokolowski W, Tan S, Pryor M.Lightweight shape memory self-deployable structures for gossamer applications. In: Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference; 2004 Apr 19–22; Palm Springs, CA, USA; 2014.

[75] Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed 2002;41(12):2034–57 链接1

[76] Behl M, Lendlein A. Shape-memory polymers. Mater Today 2007;10(4):20–8 链接1

[77] Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M. Carbon fiber reinforced shape memory polymer composites. J Intelli Mater Syst Struct 2000;11(11):877–86 链接1

[78] Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature 2005;434(7035):879–82 链接1

[79] Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers 2011;3(3):1215–42 链接1

[80] Leng JS, Lan X, Liu YJ, Du SY. Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 2011;56(7):1077–135 链接1

[81] Jiang HY, Kelch S, Lendlein A. Polymers move in response to light. Adv Mat 2006;18(11):1471–5 链接1

[82] Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. J Mater Sci 2008;43(1):254–69 链接1

[83] Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials. Mater Today 2010;13(7–8):54–61 链接1

[84] Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, et al.Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J Polym Res 2012;19:9952 链接1

[85] Zhou Y, Huang WM. Shape memory effect in polymeric materials: Mechanisms and optimization. Proc IUTAM 2015;12:83–92 链接1

[86] Xie T. Recent advances in polymer shape memory. Polymer 2011;52(22):4985–5000 链接1

[87] Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 2010;35(1–2):3–23 链接1

[88] Wu XL, Huang WM, Zhao Y, Ding Z, Tang C, Zhang JL. Mechanisms of the shape memory effect in polymeric materials. Polymers 2013;5(4):1169–202 链接1

[89] Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H. Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 2012;72(10):1178–82 链接1

[90] Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 1991;56(1):38–43 链接1

[91] Lu HB, Huang WM, Yao YT. Review of chemo-responsive shape change/memory polymers. Pigm Resin Technol 2013;42(4):237–46 链接1

[92] Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl Phys Lett 2005;86(11):114105 链接1

[93] Varghese S, Lele AK, Srinivas D, Sastry M, Mashelkar RA. Novel macroscopic self-organization in polymer gels. Adv Mater 2001;13(20):1544–8 链接1

[94] Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, et al.Shaping tissue with shape memory materials. Adv Drug Delivery Rev 2013;65(4):515–35 链接1

[95] Zhu CC, Bettinger CJ. Photoreconfigurable physically cross-linked triblock copolymer hydrogels: Photodisintegration kinetics and structure–property relationships. Macromolecules 2015;48(5):1563–72 链接1

[96] Zhu CC, Bettinger CJ. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J Mater Chem B 2014;2(12):1613–8 链接1

[97] Johnson JA, Turro NJ, Koberstein JT, Mark JE. Some hydrogels having novel molecular structures. Prog Polym Sci 2010;35(3):332–7 链接1

[98] Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater 2010;22(31):3388–410 链接1

[99] Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007 链接1

[100] Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901 链接1

[101] Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 2016;25:105034 链接1

[102] Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, et al.Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 2016;6:24224 链接1

[103] Yu K, Ritchie A, Mao YQ, Dunn ML, Qi HJ. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Proc IUTAM 2015;12:193–203 链接1

[104] Mao YQ, Yu K, Isakov MS, Wu JT, Dunn ML, Qi HJ. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 2015;5:13616 链接1

[105] Xie T, Xiao XC, Cheng YT. Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 2009;30(21):1823–7 链接1

[106] Luo XF, Mather PT. Triple-shape polymeric composites (TSPCs). Adv Funct Mater 2010;20(16): 2649–56 链接1

[107] Ge Q, Luo XF, Iversen CB, Nejad HB, Mather PT, Dunn ML, et al.A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. Int J Solids Struct 2014;51(15–16):2777–90 链接1

[108] Xie T. Tunable polymer multi-shape memory effect. Nature 2010;464(7286):267–70 链接1

[109] Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci USA 2006;103(48):18043–7 链接1

[110] Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012;45(2):1062–9 链接1

[111] Sun L, Huang WM. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 2010;6:4403–6 链接1

[112] Teoh JEM, An J, Chua CK, Lv M, Krishnasamy V, Liu Y. Hierarchically self-morphing structure through 4D printing. Virtual Phys Prototyping 2017;12(1):61–8 链接1

[113] Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 2016;6:31110 链接1

[114] Choong YYC, Maleksaeedi S, Eng H, Su PC, Wei J. Curing characteristics of shape memory polymers in 3D projection and laser stereolithography. Virtual Phys Prototyping 2017;12(1):77–84 链接1

[115] Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016;28(22):4449–54 链接1

[116] Zarek M, Layani M, Eliazar S, Mansour N, Cooperstein I, Shukrun E, et al.4 D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys Prototyping 2016;11(4):263–70 链接1

[117] Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al.4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 2016;6:27226 链接1

[118] An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprint 2015;2(1):3–5.

[119] Zhang Q, Yan D, Zhang K, Hu G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci Rep 2015;5:8936 链接1

[120] Le Duigou A, Castro M, Bevan R, Martin N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater Des 2016;96:106–14 链接1

[121] Le Duigou A, Bourmaud A, Davies P, Baley C. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng 2014;90:140–8 链接1

[122] Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8 链接1

[123] Armon S, Efrati E, Kupferman R, Sharon E. Geometry and mechanics in the opening of chiral seed pods. Science 2011;333(6050):1726–30 链接1

[124] Aharoni H, Sharon E, Kupferman R. Geometry of thin nematic elastomer sheets. Phys Rev Lett 2014;113(25):257801 链接1

[125] Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890 链接1

[126] Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Delivery Rev 2016;107:136–52 链接1

[127] Chen SJ, Hu JL, Zhuo HT, Zhu Y. Two-way shape memory effect in polymer laminates. Mater Lett 2008;62(25):4088–90 链接1

[128] Chen SJ, Hu JL, Zhuo HT. Properties and mechanism of two-way shape memory polyurethane composites. Compos Sci Technol 2010;70(10):1437–43 链接1

[129] Tamagawa H. Thermo-responsive two-way shape changeable polymeric laminate. Mater Lett 2010;64(6):749–51 链接1

[130] Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, et al.Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 2011;20(6):065010 链接1

[131] Bai YK, Zhang XR, Wang QH, Wang TM. A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J Mater Chem A 2014;2:4771–8 链接1

[132] Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al.3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 2016;6:24761 链接1

[133] Naficy S, Gately R, Gorkin III R, Xin H, Spinks GM. 4D printing of reversible shape morphing hydrogel structures. Macromol Mater Eng 2016;302(1):1600212 链接1

[134] Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng 2017;2:67–75 链接1

[135] Kawai T, Matsuda T, inventors; JMSCo., Ltd., assignee. Plastic molded articles with shape memory property. European patent EP19890300839. 1994 Dec 21.

[136] Brenner D, Lundberg RD, inventors; Exxon Research & Engineering Co., assignee. Elastomeric systems having unusual memory characteristics. United States patent US 05/855,567. 1980 Mar 18.

[137] Froix M, inventor; Quanam Medical Corporation, assignee. Expandable polymeric stent with memory and delivery apparatus and method. United States patent US 09/177,917. 2011 Jun 19.

[138] Froix M, inventor; Froix M, assignee. Method of using expandable polymeric stent with memory. United States patent US 07/874,181. 1993 Nov 2.

[139] Schroeppel EA, Spehr PR, Machek JE, inventors; Intermedics Inc., assignee. Implantable cardiac lead with multiple shape memory polymer structures. United States patent US 09/025,164. 1999 Sep 28.

[140] Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer 1996;37(26):5781–93 链接1

[141] Liang C, Rogers CA, Malafeew E. Investigation of shape memory polymers and their hybrid composites. Journal of Intelligent Material Systems and Structures 1997;8(4):380–6 链接1

[142] Chung T, Romo-Uribe A, Mather PT. Two-way reversible shape memory in a semicrystalline network. Macromolecules 2008;41(1):184–92 链接1

[143] Teoh JEM, Chua CK, Liu Y, An J. 4D printing of customised smart sunshade: A conceptual study. In: da Silva FM, Bártolo H, Bártolo P, Almendra R, Roseta F, Almeida HA, et al., editors Challenges for technology innovation: An agenda for the future. London: CRC Press; 2017. p. 105–8 链接1

相关研究