期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.021

电子束选区熔化过程的建模研究及实验验证

1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA
3. State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

录用日期 : 2017-11-06 00:00:00.000 发布日期 :2017-10-31

下一篇 上一篇

摘要

电子束选区熔化技术(EBSM)是一种很有潜力的增材制造(AM)技术。EBSM 由三个主要步骤组成:铺设粉层、预热至粉末略烧结和选区熔化粉末床。这些步骤中涉及高度瞬态多物理场现象,给原位实验的观察和测量带来了重大挑战。利用了高保真模型和后处理实验,来增强对各个步骤中物理机制的理解。模型模拟了实际制造过程,包括:使用离散元法(DEM)的铺粉模型、粉末烧结(固态烧结)的相场(PF)模型和使用有限体积法(FVM)的粉末熔化(液态烧结)模型。本文对所有主要步骤进行了全面的分析,这些分析很少有人报道过。初步模拟结果(包括粉末颗粒在粉末床内的堆积、颗粒之间烧结颈的形成和单道成形缺陷)与实验结果基本一致,表明该模型可以诠释所述机制,并能够指导实验设置和制造过程的设计和优化。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[1]  Yang L, Harrysson O, West H, Cormier D. Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 2012;60(8):3370–9 链接1

[2]  Ge W, Lin F, Guo C. Functional gradient material of Ti-6Al-4V and γ-TiAl fabricated by electron beam selective melting. In: Proceedings: 26th Annual International Solid Freeform Fabrication Symposium—An additive manufacturing conference; 2015 Aug 10–12; Austin, Texas; 2015. p. 602–13.

[3]  Ge W, Guo C, Lin F. Microstructures of components synthesized via electron beam selective melting using blended pre-alloyed powders of Ti6Al4V and Ti45Al7Nb. Rare Met Mater Eng 2015;44(11):2623–7 链接1

[4]  Guo C, Ge W, Lin F. Dual-material electron beam selective melting: Hardware development and validation studies. Engineering 2015;1(1):124–30 链接1

[5]  Körner C, Bauereiß A, Attar E. Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 2013;21(8):085011 链接1

[6]  Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45 链接1

[7]  King W, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol 2015;31(8):957–68 链接1

[8]  Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 2015;96:72–9 链接1

[9]  Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 1958;28(2):258–67 链接1

[10]  Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al.The FEniCS Project version 1.5. Arch Numer Softw 2015;3(100):9–23

[11]  Yan W, Smith J, Ge W, Lin F, Liu WK. Multiscale modeling of electron beam and substrate interaction: A new heat source model. Comput Mech 2015;56(2):265–76 链接1

[12]  Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12 链接1

[13]  Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, et al.Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 2017;134:324–33. doi: 链接1

[14]  Roth TA, Suppayak P. The surface and grain boundary free energies of pure titanium and the titanium alloy Ti–6Al–4V. Mater Sci Eng 1978;35(2):187–96 链接1

[15]  Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 1999;47(13):3705–20 链接1

[16]  Sushko GB, Verkhovtsev AV, Yakubovich AV, Schramm S, Solov’yov AV. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface. J Phys Chem A 2014;118(33):6685–91 链接1

[17]  Barkhudarov MR. Lagrangian VOF advection method for FLOW-3D?. Leland: Flow Science, Inc.; 2004 Jun. Report No.: FSI-03-TN63-R.

相关研究