期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.023

基于激光粉床熔融镍合金(Inconel 718)加热凝固分析的数值模拟和实验分析

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

录用日期 : 2017-11-03 00:00:00.000 发布日期 :2017-10-31

下一篇 上一篇

摘要

有限元模型和Rosenthal 方程在激光粉床熔融Inconel 718 合金热学现象及微观研究方面具有广泛应用。通过了解 Rosenthal 方程(该方程为有限元分析提供了一种非同寻常的方法)的优点及缺点,研究潜在假设对于估计结果的影响,结合实验对材料物理特性进行对比分析。本文结合有限元模型及 Rosenthal 分析方程预测熔池形状并与文献实验做比较,结果表明这两种方法均能够提供合理准确的估计结果,包括预测出柱状凝固微结构和一次枝晶间距(PDAS)值,与实验结果符合良好。与此同时,基于吸收率选择的灵敏度分析表明,与有限元法相比,Rosenthal 法对吸收率更为敏感,其原因可能是 Rosenthal 法忽略辐射和对流造成的能量流失。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[1]  Petrick IJ, Simpson TW. 3D printing disrupts manufacturing: How economies of one create new rules of competition. Res Technol Manag 2013;56(6):12–6 链接1

[2]  Zhao X, Promoppatum P, Yao SC. Numerical modeling of non-linear thermal stress in direct metal laser sintering process of titanium alloy products. In: Proceedings of the First Thermal and Fluids Engineering Summer Conference; 2015 Aug 9–12; New York, NY, USA. New York: American Society of Thermal and Fluids Engineers; 2015. p. 1519–31.

[3]  Kumar LJ, Nair CGK. Current trends of additive manufacturing in the aerospace industry. In: Wimpenny DI, Pandey PM, Kumar LJ, editors Advances in 3D printing & additive manufacturing technologies. Singapore: Springer; 2017. p. 39–54.

[4]  Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Opt Laser Technol 2014;62:161–71 链接1

[5]  Wang X, Keya T, Chou K. Build height effect on the Inconel 718 parts fabricated by selective laser melting. Procedia Manuf 2016;5:1006–17 链接1

[6]  Promoppatum P, Onler R, Yao SC. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 2017;240:262–73 链接1

[7]  Sadowski M, Ladani L, Brindley W, Romano J. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Addit Manuf 2016;11:60–70 链接1

[8]  Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J 1941;20(5):220–34.

[9]  Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 2017;14:39–48 链接1

[10]  Liang YJ, Li A, Cheng X, Pang XT, Wang HM. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys. J Alloys Compd 2016;688(Pt A):133–42.

[11]  Romano J, Ladani L, Sadowski M. Laser additive melting and solidification of Inconel 718: Finite element simulation and experiment. JOM 2016;68(3):967–77 链接1

[12]  Romano J, Ladani L, Sadowski M. Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 2015;1:238–50 链接1

[13]  Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12 链接1

[14]  Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, et al.Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 2017;134:324–33 链接1

[15]  Bonacina C, Comini G, Fasano A, Primicerio M. Numerical solution of phase-change problems. Int J Heat Mass Transfer 1973;16(10):1825–32 链接1

[16]  Hosaeus H, Seifter A, Kaschnitz E, Pottlacher G. Thermophysical properties of solid and liquid Inconel 718 alloy. High Temp High Press 2001;33(4):405–10 链接1

[17]  Hu D, Kovacevic R. Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc Inst Mech Eng Part B 2003;217(4):441–52 链接1

[18]  Sainte-Catherine C, Jeandin M, Kechemair D, Ricaud JP, Sabatier L. Study of dynamic absorptivity at 10.6 μm (CO2) and 1.06 μm (Nd-YAG) wavelengths as a function of temperature. J Phys IV France 1991;1(C7):C7-151–7.

[19]  Montgomery C, Beuth J, Sheridan L, Klingbeil N. Process mapping of Inconel 625 in laser powder bed additive manufacturing. In: Proceedings: 26th Annual International Solid Freeform Fabrication Symposium—An additive manufacturing conference; 2015 Aug 10–12; Austin, T X, USA; 2015. p. 1195–204.

[20]  Lee YS, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 2016;12(Pt B):178–88.

[21]  Gong H, Gu H, Zeng K, Dilip JJS, Pal D, Stucker B, et al.Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In: Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium ; 2014 Aug 4–6; Austin, TX, USA; 2014. p. 256–67.

[22]  Bontha S, Klingbeil NW, Kobryn PA, Fraser HL. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A 2009;513– 514:311–8.

[23]  Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Mater Trans B 1984;15(2):299–305 链接1

[24]  Wei HL, Mukherjee T, DebRoy T. Grain growth modeling for additive manufacturing of nickel based superalloys. In: Holm EA, Farjami S, Manohar P, Rohrer GS, Rollett AD, Srolovitz D, et al., editors Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016); 2016 Jul 17–21; Pittsburgh, PA , USA. Cham: Springer; 2016. p. 265–9.

[25]  ]Wang X, Gong X, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. In: Proceedings of the ASME 10th International Manufacturing Science and Engineering Conference 2015: Volume 1; 2015 Jun 8–12; Charlotte, NC , USA. New York: American Society of Mechanical Engineers; 2015. p. V001T02A063.

[26]  Nastac L, Valencia JJ, Tims ML, Dax FR. Advances in the solidification of IN718 and RS5 alloys. In: Loria EA, editor Superalloys 718, 625, 706, and various derivatives: Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives; 2001 Jun 17–20; Pittsburgh , PA, USA. Pittsburgh: The Minerals, Metals & Materials Society; 2001. p. 103–12.

[27]  Lu SZ, Hunt JD. A numerical analysis of dendritic and cellular array growth: The spacing adjustment mechanisms. J Cryst Growth 1992;123(1–2):17–34. 链接1

[28]  Kurz W, Fisher DJ. Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall 1981;29(1):11–20 链接1

[29]  Wang G, Liang J, Zhou Y, Jin T, Sun X, Hu Z. Prediction of dendrite orientation and stray grain distribution in laser surface-melted single crystal superalloy. J Mater Sci Technol (Shenyang, China) 2017;33(5):499–506 链接1

相关研究