《工程(英文)》 >> 2017年 第3卷 第5期 doi: 10.1016/J.ENG.2017.05.023
基于激光粉床熔融镍合金(Inconel 718)加热凝固分析的数值模拟和实验分析
1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
下一篇 上一篇
摘要
关键词
增材制造 ; 有限元建模 ; Rosenthal方程 ; 微结构 ; 物质的热行为 ; Inconel 718合金
图片
图1
图2
图3
图4
图5
图6
图7
图8
图9
图10
参考文献
[1] Petrick IJ, Simpson TW. 3D printing disrupts manufacturing: How economies of one create new rules of competition. Res Technol Manag 2013;56(6):12–6 链接1
[2] Zhao X, Promoppatum P, Yao SC. Numerical modeling of non-linear thermal stress in direct metal laser sintering process of titanium alloy products. In: Proceedings of the First Thermal and Fluids Engineering Summer Conference; 2015 Aug 9–12; New York, NY, USA. New York: American Society of Thermal and Fluids Engineers; 2015. p. 1519–31.
[3] Kumar LJ, Nair CGK. Current trends of additive manufacturing in the aerospace industry. In: Wimpenny DI, Pandey PM, Kumar LJ, editors Advances in 3D printing & additive manufacturing technologies. Singapore: Springer; 2017. p. 39–54.
[4] Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Opt Laser Technol 2014;62:161–71 链接1
[5] Wang X, Keya T, Chou K. Build height effect on the Inconel 718 parts fabricated by selective laser melting. Procedia Manuf 2016;5:1006–17 链接1
[6] Promoppatum P, Onler R, Yao SC. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 2017;240:262–73 链接1
[7] Sadowski M, Ladani L, Brindley W, Romano J. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Addit Manuf 2016;11:60–70 链接1
[8] Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J 1941;20(5):220–34.
[9] Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 2017;14:39–48 链接1
[10] Liang YJ, Li A, Cheng X, Pang XT, Wang HM. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys. J Alloys Compd 2016;688(Pt A):133–42.
[11] Romano J, Ladani L, Sadowski M. Laser additive melting and solidification of Inconel 718: Finite element simulation and experiment. JOM 2016;68(3):967–77 链接1
[12] Romano J, Ladani L, Sadowski M. Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 2015;1:238–50 链接1
[13] Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12 链接1
[14] Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, et al.Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 2017;134:324–33 链接1
[15] Bonacina C, Comini G, Fasano A, Primicerio M. Numerical solution of phase-change problems. Int J Heat Mass Transfer 1973;16(10):1825–32 链接1
[16] Hosaeus H, Seifter A, Kaschnitz E, Pottlacher G. Thermophysical properties of solid and liquid Inconel 718 alloy. High Temp High Press 2001;33(4):405–10 链接1
[17] Hu D, Kovacevic R. Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc Inst Mech Eng Part B 2003;217(4):441–52 链接1
[18] Sainte-Catherine C, Jeandin M, Kechemair D, Ricaud JP, Sabatier L. Study of dynamic absorptivity at 10.6 μm (CO2) and 1.06 μm (Nd-YAG) wavelengths as a function of temperature. J Phys IV France 1991;1(C7):C7-151–7.
[19] Montgomery C, Beuth J, Sheridan L, Klingbeil N. Process mapping of Inconel 625 in laser powder bed additive manufacturing. In: Proceedings: 26th Annual International Solid Freeform Fabrication Symposium—An additive manufacturing conference; 2015 Aug 10–12; Austin, T X, USA; 2015. p. 1195–204.
[20] Lee YS, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 2016;12(Pt B):178–88.
[21] Gong H, Gu H, Zeng K, Dilip JJS, Pal D, Stucker B, et al.Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In: Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium ; 2014 Aug 4–6; Austin, TX, USA; 2014. p. 256–67.
[22] Bontha S, Klingbeil NW, Kobryn PA, Fraser HL. Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A 2009;513– 514:311–8.
[23] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Mater Trans B 1984;15(2):299–305 链接1
[24] Wei HL, Mukherjee T, DebRoy T. Grain growth modeling for additive manufacturing of nickel based superalloys. In: Holm EA, Farjami S, Manohar P, Rohrer GS, Rollett AD, Srolovitz D, et al., editors Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 2016); 2016 Jul 17–21; Pittsburgh, PA , USA. Cham: Springer; 2016. p. 265–9.
[25] ]Wang X, Gong X, Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. In: Proceedings of the ASME 10th International Manufacturing Science and Engineering Conference 2015: Volume 1; 2015 Jun 8–12; Charlotte, NC , USA. New York: American Society of Mechanical Engineers; 2015. p. V001T02A063.
[26] Nastac L, Valencia JJ, Tims ML, Dax FR. Advances in the solidification of IN718 and RS5 alloys. In: Loria EA, editor Superalloys 718, 625, 706, and various derivatives: Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives; 2001 Jun 17–20; Pittsburgh , PA, USA. Pittsburgh: The Minerals, Metals & Materials Society; 2001. p. 103–12.
[27] Lu SZ, Hunt JD. A numerical analysis of dendritic and cellular array growth: The spacing adjustment mechanisms. J Cryst Growth 1992;123(1–2):17–34. 链接1
[28] Kurz W, Fisher DJ. Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall 1981;29(1):11–20 链接1
[29] Wang G, Liang J, Zhou Y, Jin T, Sun X, Hu Z. Prediction of dendrite orientation and stray grain distribution in laser surface-melted single crystal superalloy. J Mater Sci Technol (Shenyang, China) 2017;33(5):499–506 链接1