期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第2期 doi: 10.1016/j.eng.2017.09.002

一种将拓扑优化设计转化为增材制造结构的实现方法

State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China

收稿日期: 2017-03-31 修回日期: 2017-08-20 录用日期: 2017-09-13 发布日期: 2018-02-03

下一篇 上一篇

摘要

拓扑优化是一种用于确定最佳结构构型以获得所需性能的功能强大的设计方法。它已被广泛用于工程领域,如航空航天和汽车行业,以提高所设计结构的性能。然而,拓扑优化和工程应用之间仍然存在着一些明显阻碍拓扑优化应用的空白。其中一个空白是如何将拓扑结果(尤其是那些使用变密度框架获得的拓扑结果)解释为参数化计算机辅助设计(CAD)模型,以为随后进行的形状优化和制造创造条件。本文提出了一种将拓扑优化结果解释为适用于增材制造的STL 模型和参数化CAD 模型的新方法。在这个方法中,我们将首先提取拓扑优化结果的骨架,以确保可以保持原有形状,并使用滤波手段来获得更加光滑的边界。经过这一过程后,拓扑优化结果边界的节点分布更密集,这将为后续的曲线拟合提供便利。该方法基于均匀B 样条曲线的曲率和曲率导数,提出了一种自适应的B 样条拟合方法,以获得满足误差要求的含最少控制点的参数化CAD 模型。通过一个案例研究对所提出的方法进行了详细的描述,并通过另外两个示例证明了所提出方法的有效性和鲁棒性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

参考文献

[ 1 ] Zhu J, Zhang W, Beckers P. Integrated layout design of multi-component system. Int J Numer Methods Eng 2009;78(6):631–51. 链接1

[ 2 ] Liu S, Hu R, Li Q, Zhou P, Dong Z, Kang R. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope. Appl Opt 2014;53(35):8318–25. 链接1

[ 3 ] Zhou M, Rozvany GIN. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 1991; 89(1–3):309–36. 链接1

[ 4 ] Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. Arch Appl Mech 1999;69(9–10):635–54. 链接1

[ 5 ] Allaire G, Jouve F, Toader AM. A level-set method for shape optimization. C R Math 2002;334(12):1125–30. 链接1

[ 6 ] Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng 2003;192(1–2):227–46. 链接1

[ 7 ] Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct 1993;49(5):885–96. 链接1

[ 8 ] Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip Optim 2013;48(6):1031–55. 链接1

[ 9 ] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Boston: Springer; 2010.

[10] Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 2012;28(1):1–14. 链接1

[11] Turner BN, Strong R, Gold SA. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 2014;20:192–204. 链接1

[12] Hopkinson N, Hague RJM, Dickens PM, editors. Rapid manufacturing: an industrial revolution for the digital age. Chichester: John Wiley & Sons, Ltd.; 2006. 链接1

[13] Han P. Additive design and manufacturing of jet engine parts. Engineering 2017;3(5):648–52. 链接1

[14] Lu B, Li D, Tian X. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9. 链接1

[15] An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering 2015;1(2):261–8. 链接1

[16] Lee AY, An J, Chua CK. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory. Engineering 2017;3(5):663–74. 链接1

[17] Liu S, Li Q, Chen W, Tong L, Cheng G. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Front Mech Eng 2015;10(2):126–37. 链接1

[18] Li Q, Chen W, Liu S, Tong L. Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim 2016;54(4):971–84. 链接1

[19] Wang K, Ho CC, Zhang C, Wang B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 2017;3(5):653–62. 链接1

[20] Cleveland RB, Cleveland WS, McRae JE, Terpenning I. STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 1990;6(1):3–33. 链接1

[21] Liewald MH. Initial graphics exchange specification: successes and evolution. Comput Graph 1985;9(1):47–50. 链接1

[22] Kumar AV, Gossard DC. Synthesis of optimal shape and topology of structures. J Mech Des 1996;118(1):68–74. 链接1

[23] Hsu YL, Hsu MS, Chen CT. Interpreting results from topology optimization using density contours. Comput Struct 2001;79(10):1049–58. 链接1

[24] Hsu MH, Hsu YL. Interpreting three-dimensional structural topology optimization results. Comput Struct 2005;83(4–5):327–37. 链接1

[25] Li C, Kim IY, Jeswiet J. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Struct Multidiscip Optim 2015;51(2):547–64. 链接1

[26] Larsen S, Jensen CG. Converting topology optimization results into parametric CAD models. Comput Aided Des Appl 2009;6(3):407–18. 链接1

[27] Lin CY, Chao LS. Automated image interpretation for integrated topology and shape optimization. Struct Multidiscip Optim 2000;20(2):125–37. 链接1

[28] Zegard T, Paulino GH. Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 2016;53(1):175–92. 链接1

[29] Yildiz AR, Öztürk N, Kaya N, Öztürk F. Integrated optimal topology design and shape optimization using neural networks. Struct Multidiscip Optim 2003;25 (4):251–60. 链接1

[30] Marsan AL, Dutta D. Construction of a surface model and layered manufacturing data from 3D homogenization output. J Mech Des 1996;118 (3):412–8. 链接1

[31] Tang PS, Chang KH. Integration of topology and shape optimization for design of structural components. Struct Multidiscip Optim 2001;22(1):65–82. 链接1

[32] Papalambros PY, Chirehdast M. An integrated environment for structural configuration design. J Eng Des 1990;1(1):73–96. 链接1

[33] Chang KH, Tang PS. Integration of design and manufacturing for structural shape optimization. Adv Eng Softw 2001;32(7):555–67. 链接1

[34] Koguchi A, Kikuchi N. A surface reconstruction algorithm for topology optimization. Eng Comput 2006;22(1):1–10. 链接1

[35] Chacón JM, Bellido JC, Donoso A. Integration of topology optimized designs into CAD/CAM via an IGES translator. Struct Multidiscip Optim 2014;50 (6):1115–25. 链接1

[36] Yi G, Kim NH. Identifying boundaries of topology optimization results using basic parametric features. Struct Multidiscip Optim 2017;55(5):1641–54. 链接1

[37] Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 1988;71 (2):197–224. 链接1

[38] Bendsøe MP. Optimal shape design as a material distribution problem. Struct Optim 1989;1(4):193–202. 链接1

[39] Cheng KT, Olhoff N. An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 1981;17(3):305–23. 链接1

[40] Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 1987;24(2):359–73. 链接1

[41] Sigmund O. A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim 2001;21(2):120–7. 链接1

[42] Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O. Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 2011;43(1):1–16. 链接1

[43] Liu K, Tovar A. An efficient 3D topology optimization code written in MATLAB. Struct Multidiscip Optim 2014;50(6):1175–96. 链接1

相关研究