《工程(英文)》 >> 2018年 第4卷 第2期 doi: 10.1016/j.eng.2018.03.007
组织工程模板中的生物相容性途径
Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
下一篇 上一篇
摘要
组织工程通过系统结合分子信号和力学信号对特定靶细胞进行有意可控刺激以组建新的组织,通常需要借助由生物材料构建的结构传递这些信号,并对生成的组织块塑形。这些结构之前被称为支架,如今被更准确地命名为模板,其规范却难以定义,主要因为该规范必须涉及为细胞组建新组织提供适宜的微环境,以及细胞与模板材料的相互作用符合构建新型可存活组织的需求。这些特点统称为生物相容性。然而,传统生物相容性的理论和公认机制(大多通过可移植的医学装置进行实验得出)不足以解释在组织工程过程中的现象。本文作者近期在特定的基于材料、生物学的途径方面重新定义了生物相容性。本文以上述途径为前提讨论了组织工程生物相容性的机制。
参考文献
[ 1 ] Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol 2006;24(1):4–8. 链接1
[ 2 ] Williams DF. The biomaterials conundrum in tissue engineering. Tissue Eng Part A 2014;20(7–8):1129–31. 链接1
[ 3 ] Williams DF. Essential biomaterials science. Cambridge: Cambridge University Press; 2014.
[ 4 ] Williams DF. Biocompatibility pathways: biomaterials-induced sterile inflammation, mechanotransduction, and principles of biocompatibility control. ACS Biomater Sci Eng 2017;3(1):2–35. 链接1
[ 5 ] Williams DF, editor. Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials; 1986 Mar 3–5; Chester, UK. Amsterdam: Elsevier Science Ltd.; 1987. 链接1
[ 6 ] Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29 (20):2941–53. 链接1
[ 7 ] Williams DF. There is no such thing as a biocompatible material. Biomaterials 2014;35(38):10009–14. 链接1
[ 8 ] Mouthuy PA, Snelling SJB, Dakin SG, Milkovic´ L, Gašparovic´ AC, Carr AJ, et al. Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials 2016;109:55–68. 链接1
[ 9 ] Ren K, Chen Y, Wu H. New materials for microfluidics in biology. Curr Opin Biotechnol 2014;25:78–85. 链接1
[10] Ekdahl KN, Lambris JD, Elwing H, Ricklin D, Nilsson PH, Teramura Y, et al. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 2011;63(12):1042–50. 链接1
[11] Ambesi A, McKeown-Longo PJ. Conformational remodeling of the fibronectin matrix selectively regulates VEGF signaling. J Cell Sci 2014;127(Pt 17): 3805–16. 链接1
[12] Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013;8(10):772–81. 链接1
[13] Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 2014;15 (12):825–33. 链接1
[14] Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012;59 (15):1337–49. 链接1
[15] Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 2010;9(6):518–26. 链接1
[16] Li Y, Zhang X, Cao D. Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale 2015;7(6):2758–69. 链接1
[17] Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10(12):826–37. 链接1
[18] Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 2010;6(5):619–33. 链接1
[19] Yim EKF, Sheetz MP. Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther 2012;3(5):41. 链接1
[20] Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 2011;29(11):1886–97. 链接1
[21] Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta 2013;1830(2):2470–80. 链接1
[22] Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 2010;8(2):98–104. 链接1
[23] Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med 2016;10(1):11–28. 链接1
[24] Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C. Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 2012;32(5):1039–73. 链接1
[25] Leal-Egaña A, Scheibel T. Interactions of cell with silk surfaces. J Mater Chem 2012;22(29):14330–6. 链接1
[26] Zustiak SP, Wei Y, Leach JB. Protein-hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Part B Rev 2013;19 (2):160–71. 链接1
[27] Gonen-Wadmany M, Oss-Ronen L, Seliktar D. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 2007;28(26):3876–86. 链接1
[28] Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, et al. The immunology of fibrosis. Annu Rev Immunol 2013;31:107–35. 链接1
[29] Guo H, Callaway JB, Ting JPY. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21(7):677–87. 链接1
[30] Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016;44(3):450–62. 链接1
[31] Martínez E, Lagunas A, Mills CA, Rodríguez-Seguí S, Estévez M, Oberhansl S, et al. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine (Lond) 2009;4(1):65–82. 链接1