期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.002

 对化学链系统中氧载体材料发展的新认识

a William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
b Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA

# The authors contribute equally.

收稿日期: 2017-12-13 修回日期: 2018-01-20 录用日期: 2018-05-07 发布日期: 2018-05-19

下一篇 上一篇

摘要

化学循环燃烧(CLC)和化学循环重整(CLR)是通过循环氧化还原反应将清洁和有效的碳氢化合物转化为动力、燃料和化学品的创新技术。金属氧化物材料在化学循环氧化还原过程中起着重要作用。在还原过程中,氧载体提供所需量的氧离子用于烃转化和产物合成。在氧化步骤中,耗尽的金属氧化物氧载体从空气中补充分子氧,同时释放热量。近年来,用于各种化学循环应用的氧载体材料已经取得了显着进步。在这些金属氧化物材料中,铁基氧载体由于其高载氧能力、成本效益和化学循环反应应用的多功能性而具有吸引力。它们的反应性也可以通过结构设计和改进来增强。本文讨论了氧载体材料开发的最新进展以及这些材料上烃转化的机制。这些进步将促进氧载体材料的开发,以实现更有效的化学循环技术应用。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Qin L, Guo M, Cheng Z, Xu M, Liu Y, Xu D, et al. Improved cyclic redox reactivity of lanthanum modified iron-based oxygen carriers in carbon monoxide chemical looping combustion. J Mater Chem A 2017;5(38):20153–60. 链接1

[ 2 ] Mattisson T, Lyngfelt A, Leion H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int J Greenh Gas Control 2009;3(1):11–9. 链接1

[ 3 ] Hallberg P, Källén M, Jing D, Snijkers F, van Noyen J, Rydén M, et al. Experimental investigation of based oxygen carriers used in continuous chemical-looping combustion. Int J Chem Eng 2014;2014:1–9. 链接1

[ 4 ] Bakken E, Norby T, Stølen S. Nonstoichiometry and reductive decomposition of CaMnO3—d. Solid State Ion 2005;176(1–2):217–23. 链接1

[ 5 ] Gu H, Shen L, Xiao J, Zhang S, Song T. Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor. Energy Fuels 2011;25(1):446–55. 链接1

[ 6 ] Li F, Kim HR, Sridhar D, Wang F, Zeng L, Chen J, et al. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels 2009;23(8):4182–9. 链接1

[ 7 ] Li F, Sun Z, Luo S, Fan LS. Ionic diffusion in the oxidation of iron—effect of support and its implications to chemical looping applications. Energy Environ Sci 2011;4(3):876–80. 链接1

[ 8 ] Day RJ, Frisch MA. Chromium chromate as an inert marker in copper oxidation. Surf Interface Anal 1986;8(1):33–6. 链接1

[ 9 ] Chiang YM, Birnie DP, Kingery WD. Physical ceramics: principles for ceramic science and engineering. New York: John Wiley & Sons; 1996.

[10] Qin L, Majumder A, Fan JA, Kopechek D, Fan LS. Evolution of nanoscale morphology in single and binary metal oxide microparticles during reduction and oxidation processes. J Mater Chem A 2014;2(41):17511–20. 链接1

[11] Qin L, Cheng Z, Fan JA, Kopechek D, Xu D, Deshpande N, et al. Nanostructure formation mechanism and ion diffusion in iron–titanium composite materials with chemical looping redox reactions. J Mater Chem A 2015;3 (21):11302–12. 链接1

[12] Fu Y, Chen J, Zhang H. Synthesis of Fe2O3 nanowires by oxidation of iron. Chem Phys Lett 2001;350(5–6):491–4. 链接1

[13] Wen X, Wang S, Ding Y, Wang ZL, Yang S. Controlled growth of large-area, uniform, vertically aligned arrays of a-Fe2O3 nanobelts and nanowires. J Phys Chem B 2005;109(1):215–20. 链接1

[14] Dang HY, Wang J, Fan SS. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology 2003;14(7):738–41. 链接1

[15] Fan LS. Chemical looping systems for fossil energy conversions. Hoboken: John Wiley & Sons; 2010. 链接1

[16] Wilson NC, Muscat J, Mkhonto D, Ngoepe PE, Harrison NM. Structure and properties of ilmenite from first principles. Phys Rev B 2005;71 (7):075202. 链接1

[17] Yang Z, Woo TK, Baudin M, Hermansson K. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. J Chem Phys 2004;120(16):7741–9. 链接1

[18] Chen L, Lu Y, Hong Q, Lin J, Dautzenberg FM. Catalytic partial oxidation of methane to syngas over Ca-decorated-Al2O3-supported Ni and NiB catalysts. Appl Catal A Gen 2005;292:295–304.

[19] Sauer J, Dobler J. Structure and reactivity of V2O5: bulk solid, nanosized clusters, species supported on silica and alumina, cluster cations and anions. Dalton Trans 2004;19(19):3116–21. 链接1

[20] Thomas TJ, Fan LS, Gupta P, Velazquez-Vargas LG, inventors; The Ohio State University, assignee. Combustion looping using composite oxygen carriers. United States patent US 7767191. 2010 Aug 3. 链接1

[21] Tong A, Zeng L, Kathe MV, Sridhar D, Fan LS. Application of the moving-bed chemical looping process for high methane conversion. Energy Fuels 2013;27 (8):4119–28. 链接1

[22] Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite. Thermochim Acta 2006;447 (1):89–100. 链接1

[23] Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part II: low temperature reduction of magnetite. Thermochim Acta 2007;456 (2):75–88.

[24] Cheng Z, Qin L, Guo M, Fan JA, Xu D, Fan LS. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies. Phys Chem Chem Phys 2016;18(24):16423–35. 链接1

[25] De Diego LF, Ortiz M, Adánez J, García-Labiano F, Abad A, Gayán P. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem Eng J 2008;144(2):289–98.

[26] Fan LS. Chemical looping partial oxidation: gasification, reforming, and chemical syntheses. Cambridge: Cambridge University Press; 2017.

[27] He F, Wei Y, Li H, Wang H. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides. Energy Fuels 2009;23(4):2095–102. 链接1

[28] Azimi G, Mattisson T, Leion H, Rydén M, Lyngfelt A. Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). Int J Greenh Gas Control 2015;34:12–24. 链接1

[29] Qin L, Cheng Z, Guo M, Fan JA, Fan LS. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes. Acta Mater 2017;124:568–78. 链接1

[30] Luo S, Zeng L, Xu D, Kathe M, Chung E, Deshpande N, et al. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2:CO ratio of 2:1. Energy Environ Sci 2014;7(12):4104–17. 链接1

[31] Jin Y, Sun C, Su S. Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO. Phys Chem Chem Phys 2015;17 (25):16277–84. 链接1

[32] Cheng Z, Qin L, Guo M, Xu M, Fan JA, Fan LS. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process. Phys Chem Chem Phys 2016;18(47):32418–28. 链接1

[33] Monazam ER, Breault RW, Siriwardane R, Richards G, Carpenter S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism. Chem Eng J 2013;232:478–87. 链接1

[34] Liu S, Tan X, Li K, Hughes R. Methane coupling using catalytic membrane reactors. Catal Rev 2001;43(1–2):147–98. 链接1

[35] Malekzadeh A, Khodadadi A, Abedini M, Amini M, Bahramian A, Dalai AK. Correlation of electrical properties and performance of OCM MOx/Na2WO4/ SiO2 catalysts. Catal Commun 2001;2(8):241–7. 链接1

[36] Hutchings GJ, Scurrell MS, Woodhouse JR. Oxidative coupling of methane using oxide catalysts. Chem Soc Rev 1989;18:251–83. 链接1

[37] Choudhary VR, Rane VH. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons. J Catal 1991;130(2):411–2. 链接1

[38] Dubois JL, Cameron CJ. Common features of oxidative coupling of methane cofeed catalysts. Appl Catal 1990;67(1):49–71. 链接1

[39] Greish AA, Glukhov LM, Finashina ED, Kustov LM, Sung J, Choo K, et al. Oxidative coupling of methane in the redox cyclic mode over the catalysts on the basis of CeO2 and La2O3. Mendeleev Commun 2010;20(1):28–30. 链接1

[40] Sung JS, Choo KY, Kim TH, Greish A, Glukhov L, Finashina E, et al. Peculiarities of oxidative coupling of methane in redox cyclic mode over Ag-La2O3/SiO2 catalysts. Appl Catal A Gen 2010;380(1–2):28–32. 链接1

[41] Huang K, Zhan XL, Chen FQ, Lü DW. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem Eng Sci 2003;58(1):81–7. 链接1

[42] Chua YT, Mohamed AR, Bhatia S. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2). Appl Catal A Gen 2008;343(1–2):142–8. 链接1

[43] Sahebdelfar S, Ravanchi MT, Gharibi M, Hamidzadeh M. Rule of 100: an inherent limitation or performance measure in oxidative coupling of methane? J Nat Gas Chem 2012;21(3):308–13. 链接1

[44] Cao Y, Sit SP, Pan WP. Preparation and characterization of lanthanum- promoted copper-based oxygen carriers for chemical looping combustion process. Aerosol Air Qual Res 2014;14(2):572–84. 链接1

[45] Cao Y, Sit SP, Pan WP. Lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. J Therm Anal Calorim 2014;116 (3):1257–66. 链接1

[46] Niu T, Liu GL, Chen Y, Yang J, Wu J, Cao Y, et al. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Appl Surf Sci 2016;364:388–99. 链接1

[47] Liu L, Zachariah MR. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion. Energy Fuels 2013;27(8):4977–83. 链接1

[48] Wang M, Liu J, Hu J, Liu F. O2–CO2 mixed gas production using a Zr-doped Cu- based oxygen carrier. Ind Eng Chem Res 2015;54(40):9805–12. 链接1

[49] Mohamed SA, Quddus MR, Razzak SA, Hossain MM, de Lasa HI. NiO/Ce-cAl2O3 oxygen carrier for chemical looping combustion. Energy Fuels 2015;29 (9):6095–103.

[50] Chen S, Zeng L, Tian H, Li X, Gong J. Enhanced lattice oxygen reactivity over Ni- modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal 2017;7(5):3548–59. 链接1

[51] Qin L, Cheng Z, Guo M, Fan JA, Fan LS. Impact of 1% lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes. ACS Energy Lett 2017;2(1):70–4. 链接1

[52] Chung C, Qin L, Shah V, Fan LS. Chemically and physically robust, commercially-viable iron-based composite oxygen carriers sustainable over 3000 redox cycles at high temperatures for chemical looping applications. Energy Environ Sci 2017;10:2318. 链接1

[53] Hsia C, St Pierre GR, Raghunathan K, Fan LS. Diffusion through the CaSO4 formed during the reaction of CaO with SO2 and O2. AIChE J 1993;39 (4):698–700. 链接1

[54] Hsia C, St Pierre GR, Fan LS. Isotope study on diffusion in the CaSO4 formed in the sorbent-flue gas reaction. AIChE J 1995;41(10):2337–40. 链接1

相关研究