期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.012

使用分布式富碳废弃物模块化生产附加值产品及燃料

Pacific Northwest National Laboratory, Richland, WA 99352, USA

收稿日期: 2017-11-14 修回日期: 2018-02-26 录用日期: 2018-05-17 发布日期: 2018-05-22

下一篇 上一篇

摘要

我们对电解反应堆进行了改造和表征,以完善区域和社区规模的废物向燃料或化学品的转换。整个过程必须能够适应各种原料以及具有内在的安全性,并且不应依赖外部设施获得共反应物或增加排热量和供热量。我们目前的方法是基于对含碳废料的水热液化(HTL)生产的生物油进行升级。水热液化可以将各种原料转化为生物油,与其他解构生物质的方式相比,其需要的升级要少得多。我们目前正在研究将电化学过程用于将生物油通过水热液化转化为燃料或更高价值化学品所需的进一步转化。我们和其他研究者已经证明,电化学还原可以提供足够的反应速率,以及在很小的程度上提供一些必要的通用性。此外,电化学反应器必须在反应器的一侧氧化(去除电子)并在另一侧还原(添加电子)。因此,原则上,这两种类型的反应可以结合以升级生物油,并同时改善在上游水热液化中用作反应物和载体的水。在这里,我们对假定流程、可能的转换化学和水热液化电化学过程的经济性进行了概述。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] The world factbook [Internet]. Washington, DC: Central Intelligence Agency; [updated 2018 Apr 1; cited 2018 Apr 23]. Available from: https://www.cia.gov/ library/publications/the-world-factbook/geos/us.html. 链接1

[ 2 ] Hoornweg D, Bhada-Tata P. What a waste: a global review of solid waste management. Washington, DC: World Bank; 2012. 链接1

[ 3 ] Mrus ST, Prendergast CA. Heating value of refuse-derived fuel. In: Proceedings of 1978 National Waste Processing Conference; 1978 May 7–10; Chicago, IL, USA. New York: American Society of Mechanical Engineers; 1978. p. 365–70. 链接1

[ 4 ] Mortensen C. Landfill tipping fees in California [Internet]. Sacramento: California Department of Resources Recycling and Recovery; 2015 [cited 2017 Jul 24]. Available from: 链接1

[ 5 ] Hoffman B, Nieves R. Biofuels and bioproducts from wet and gaseous waste streams: challenges and opportunities. Washington, DC: US Department of Energy’s Bioenergy Technologies Office; 2017 Jan. Report No: DOE/EE-1472 7601. 链接1

[ 6 ] Lohri CR, Diener S, Zabaleta I, Mertenat A, Zurbrügg C. Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Rev Environ Sci Biotechnol 2017;16(1):81–130. 链接1

[ 7 ] Current list of crude oil refineries resources [Internet]. Global Energy Observatory; 2017 [cited 2017 Jul 18]. Available from: http://globalenergyobservatory.org/list.php?db=Resources&type=Crude_Oil_ Refineries.

[ 8 ] US Department of Agriculture. Livestock and poultry: world markets and trade. Washington, DC: US Department of Agriculture; 2017 Oct. 链接1

[ 9 ] US Department of Agriculture. Dairy: world markets and trade. Washington, DC: US Department of Agriculture; 2017 Dec. 链接1

[10] World Bank. Daily manure production per animal [Internet]. Washington, DC: World Bank; 2017 [cited 2018 Apr 23]. Available from: http:// siteresources.worldbank.org/INTAPCFORUM/Resources/part3.ppt. 链接1

[11] World Bank. New data reveals uptick in global gas flaring [Internet]. Washington, DC: World Bank; 2017 [cited 2017 Jul 18]. Available from:http://www.worldbank.org/en/news/press-release/2016/12/12/new- data-reveals-uptick-in-global-gas-flaring.

[12] World Nuclear Association. Heating value of various fuels [Internet]. London: World Nuclear Association; 2016 [cited 2017 Jul 18]. Available from: http://www.world-nuclear.org/information-library/facts-and- figures/heat-values-of-various-fuels.aspx.

[13] Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, et al. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2013;2(4):445–54. 链接1

[14] Snowden-Swan LJ, Zhu Y, Jones SB, Elliott DC, Schmidt AJ, Hallen RT, et al. Hydrothermal liquefaction and upgrading of municipal wastewater treatment plant sludge: a preliminary techno-economic analysis. Richland: Pacific Northwest National Lab; 2016. Report No: PNNL-25464 BM0102060. 链接1

[15] Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 2015;178:147–56. 链接1

[16] Doassans-Carrère N, Ferrasse JH, Boutin O, Mauviel G, Lédé J. Comparative study of biomass fast pyrolysis and direct liquefaction for bio-oils production: products yield and characterizations. Energy Fuels 2014;28(8):5103–11. 链接1

[17] Haarlemmer G, Guizani C, Anouti S, Déniel M, Roubaud A, Valin S. Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 2016;174:180–8. 链接1

[18] Marrone PA. Genifuel hydrothermal processing bench-scale technology evaluation project. London: IWA Publishing; 2016. 链接1

[19] Saffron CM, Li Z, Miller DJ, Jackson JE, inventors; Board of Trustees of Michigan State University, assignee. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds. United States patent US 20150008139. 2015 Jan 8.

[20] Lam CH, Lowe CB, Li Z, Longe K, Rayburn JT, Caldwell MA, et al. Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chem 2015;17(1):601–9. 链接1

[21] Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM. Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activate carbon cloth. Green Chem 2012;14(9):2540–9. 链接1

[22] Singh N, Song Y, Gutiérrez OY, Camiaioni DM, Campbell CT, Lercher JA. Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal 2016;6(11):7466–70. 链接1

[23] Noller CR. Chemistry of organic compounds. 3rd ed. London: W.B. Saunders Company; 1966. 链接1

[24] Weisz PB. The science of the possible. Chem Tech 1982;12:424–5.

[25] Zhao HY, Li D, Bui P, Oyama ST. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A Gen 2011;391(1–2):305–10. 链接1

[26] Gutiérrez-Tinoco OY, Sanyal U, Akhade S, Lopez-Ruiz JA, Camaioni DM, Holladay J, et al. Electrocatalytic reduction of carbonyl groups in aromatic molecules: a step towards electrochemical bio-oil conversion. In: Proceedings of the 232nd ECS Meeting; 2017 Oct 1–5; National Harbor, MD, USA; 2017. 链接1

[27] Weber RS, Holladay JE, Jenks C. Modularized production of fuels and other value-added products from distributed, waste or stranded feedstocks. In: Proceedings of 2017 AIChE National Meeting; 2017 Oct 29–Nov 3; Minneapolis, MN, USA. Minneapolis: American Institute of Chemical Engineers; 2017. 链接1

[28] Ralph TR, Hitchman ML, Millington JP, Walsh FC. Mass transport in an electrochemical laboratory filterpress reactor and its enhancement by turbulence promoters. Electrochim Acta 1996;41(4):591–603. 链接1

[29] Mikhail SZ, Kimel WR. Densities and viscosities of methanol-water mixtures. J Chem Eng Data 1961;6(4):533–7. 链接1

[30] Derlacki ZJ, Easteal AJ, Edge AVJ, Woolf LA, Roksandic Z. Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol-water solutions at 278 and 298 K. J Phys Chem 1985;89(24):5318–22. 链接1

[31] Little AD. Editorial. Natural resources and manufacture. Ind Eng Chem 1909;1 (2):61–2. 链接1

[32] Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, et al. Cost and performance model for redox flow batteries. J Power Sources 2014;247:1040–51. 链接1

[33] Ames Laboratory. Chemical Conversion via Modular Manufacturing: Distributed, Stranded, and Waste Feedstocks; 2015 Dec 2–4; St. Louis, MO, USA; 2015.

[34] Ames Laboratory. Workshop on Fundamental Science Needs for Waste to Chemical Conversion. 2016 Feb 29–Mar 1; Gaithersburg, MD, USA; 2016. 链接1

相关研究