期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第3期 doi: 10.1016/j.eng.2018.05.015

机械化学法辅助荧光体浸出——稀土回收绿色工程法

a Department of Chemical Engineering, KU Leuven, Heverlee B-3001, Belgium
b Department of Chemistry, KU Leuven, Heverlee B-3001, Belgium

收稿日期: 2017-12-04 修回日期: 2018-03-14 录用日期: 2018-05-17 发布日期: 2018-05-22

下一篇 上一篇

摘要

稀土元素(REE)是设计和开发可持续能源应用的重要金属。从富含稀土元素的废物流中回收这些元素对实现独立、可持续的未来能源供应至关重要。本研究比较了从绿灯荧光体LaPO4:Ce3+,Tb3+回收稀土元素的两种机制:在湿法冶金酸浸工艺前与溶剂冶金机械化学浸出工艺前的机械活化机制。稀土元素浸出率在机械活化后增加60%,完成机械化学浸出工艺后增加98%。高分辨率透射电子显微镜(HR-TEM)成像揭露了系统元素浸出率增加的原因:浸出与浸出模式的改善可归因于晶体形态从单晶体到多晶体的转变。多晶形材料的雏晶尺寸减小至纳米级,使化学单元出现不规则填充,导致晶体内缺陷颗粒边界的增加,从而增强浸出工艺。发明了一种溶剂冶金法将机械活化与浸出工艺结合成一个步骤,这有利于降低运营成本。其结果是简单、高效的工艺提供了更加绿色的荧光体废物回收替代途经。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Goonan TG. USGS rare earth elements—end use and recyclability. Report. Washington, DC: US Department of the Interior; 2011. 链接1

[ 2 ] Schüler D, Buchert M, Liu R, Dittrich S, Merz C. Study on rare earths and their recycling. Report. Darmstadt: Öko-Institut eV; 2011. Deutsch. 链接1

[ 3 ] Dutta T, Kim KH, Uchimiya M, Kwon EE, Jeon BH, Deep A, et al. Global demand for rare earth resources and strategies for green mining. Environ Res 2016;150:182–90. 链接1

[ 4 ] Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: a critical review. J Clean Prod 2013;51:1–22. 链接1

[ 5 ] Binnemans K, Jones PT, Blanpain B, Van Gerven T, Pontikes Y. Towards zero- waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 2015;99:17–38. 链接1

[ 6 ] Pellegrini M, Godlewska L, Millet P, Gislev M, Grasser L. EU potential in the field of rare earth elements and policy actions. In: Proceedings of 2nd Conference on European Rare Earth Resources (ERES 2017); 2017 May 28–31; Santorini, Greece; 2017. p. 12–5.

[ 7 ] Binnemans K, Jones PT. Rare earths and the balance problem. J Sustain Metall 2015;1(1):29–38. 链接1

[ 8 ] Vander Hoogerstraete T, Blanpain B, Van Gerven T, Binnemans K. From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Adv 2014;4(109):64099–111. 链接1

[ 9 ] Onal MAR, Borra CR, Guo M, Blanpain B, Van Gerven T. Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching. J Sustain Metall 2015;1(3):199–215. 链接1

[10] Yang X, Zhang J, Fang X. Rare earth element recycling from waste nickel-metal hydride batteries. J Hazard Mater 2014;279:384–8. 链接1

[11] Meshram P, Pandey BD, Mankhand TR. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Waste Manage 2016;51:196–203. 链接1

[12] Tunsu C, Petranikova M, Gergoric´ M, Ekberg C, Retegan T. Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 2015;156:239–58. 链接1

[13] Tunsu C, Petranikova M, Ekberg C, Retegan T. A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Separ Purif Tech 2016;161:172–86. 链接1

[14] Yang Y, Walton A, Sheridan R, Güth K, Gauß R, Gutfleisch O, et al. REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review. J Sustain Metall 2017;3(1):122–49. 链接1

[15] Binnemans K, Jones PT. Perspectives for the recovery of rare earths from end- of-life fluorescent lamps. J Rare Earths 2014;32(3):195–200. 链接1

[16] Braconnier JJ, Rollat A, inventors. Method for recovering rare-earth elements from a solid mixture containing a halophosphate and a compound of one or more rare-earth elements. United States Patent US 8501124. 2013 Aug 6. 链接1

[17] Ippolito M, Innocenzi V, De Michelis I, Medici F, Vegli F. Rare earth elements recovery from fluorescent lamps: a new thermal pretreatment to improve the efficiency of the hydrometallurgical process. J Clean Prod 2017;153:287–98. 链接1

[18] Brisson VL, Zhuang WQ, Alvarez-Cohen L. Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng 2016;113(2):339–48. 链接1

[19] Tan Q, Li J. Recycling metals from wastes: a novel application of mechanochemistry. Environ Sci Technol 2015;49(10):5849–61. 链接1

[20] Ou Z, Li J, Wang Z. Application of mechanochemistry to metal recovery from second-hand resources: a technical overview. Environ Sci Process Impacts 2015;17(9):1522–30. 链接1

[21] Van Loy S, Binnemans K, Van Gerven T. Recycling of rare earths from lamp phosphor waste: enhanced dissolution of LaPO4:Ce3+,Tb3+ by mechanical activation. J Clean Prod 2017;156:226–34. 链接1

[22] Balázˇ P, Achimovicˇová M. Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy 2006;84(1–2):60–8. 链接1

[23] Balázˇ P, Achimovicˇová M, Balázˇ M, Billik P, Cherkezova-Zheleva Z, Criado JM, et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 2013;42(18):7571–637. 链接1

[24] Tan Q, Deng C, Li J. Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 2016;6(1):19961. 链接1

[25] Tan Q, Deng C, Li J. Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. J Clean Prod 2017;142:2187–91. 链接1

[26] Song G, Yuan W, Zhu X, Wang X, Zhang C, Li J, et al. Improvement in rare earth element recovery from waste trichromatic phosphors by mechanical activation. J Clean Prod 2017;151:361–70. 链接1

[27] Senna M. How can we make solids more reactive? Basics of mechanochemistry and recent new insights. ChemTexts 2017;3(2):4–13. 链接1

[28] Munnings C, Badwal SPS, Fini D. Spontaneous stress-induced oxidation of Ce ions in Gd-doped ceria at room temperature. Ionics (Kiel) 2014;20 (8):1117–26. 链接1

[29] Um N, Hirato T. A hydrometallurgical method of energy saving type for separation of rare earth elements from rare earth polishing powder wastes with middle fraction of ceria. J Rare Earths 2016;34(5):536–42. 链接1

[30] Gernon MD, Wu M, Buszta T, Janney P. Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green Chem 1999;1(3):127–40. 链接1

[31] Binnemans K, Jones PT. Solvometallurgy: an emerging branch of extractive metallurgy. J Sustain Metall 2017;3(3):570–600. 链接1

相关研究